An Algorithm for Splitting a Box by a Loop and Its Applications in Manufacturing

Karuna P. Karunakaran*, Anoop Kheerwal, P. Vivekananda Shanmuganathan and Rohitashwa Shringi
Computer Graphics Labonuon: Deparment of Mechunical Engineering, Indion Instinte of Techmology: Powai, Bombav 4UKO76, India

Abstract

During the design of dies and molds, the cavify of the object is ohtained by subtracting it from a surrounding rectangalar hlock. This hox is subsequently split into two halves by the parting surface. Similar problems also occur in some RP processes such as LOM, SGC, SLS and 3DP where the machine produces a block inside which the prototype is buried. Determining the orientation of the object inside the box and the corresponding parting surface taking appropriate constraints into account have been addressed by several restarchers. However, given the parting surface, the problem of splitting the box into a pair of halves has not received adequale attention; this is probably because it appears too simple. During the devefopment of a software package called OptiIOM (now a module of an RP software Magics 8.0), the authors realized nontriviality of this problem since the loop can spread over as many as 5 faces of the box. In this paper, the authors have tried to bring out the importance of this problem and have presented their algorithm to solve it.

Keywords: Tool design, Rapid Pretotyping (RP), Parting surface, Parting linc, Parting direction

1. Introduction

CNC machining or Rapid Prototyping ($R P$) can be employed when only a few pieces of an object are to be produced. When they are to be mass produced, processes such as injection molding. die casting and forging are used. These processes make use of a cavily whose geometry is the negative of the object with suitable shrinkage and machining allowances and drafts. When the raw material, which may be in liquid, semi-solid or powder form, is filled into this cavity and allowed to set. the object of the desired geometry and material is obtained. As one needs to take oun the object from the cavity and reuse the cavily for making many copies of the object. the die/ mold box is made in two openable parts called die/ mold halves. Subsequently mounting and locating details are added to the two halves as shown in the Fig. 1. The surface al which both these halves split is called parting sufface. The direction along which they separate is called parting direction (Fig. I).

The orientation of the object inside the box is determined taking into account the factors such as the number undercuts, time for filling the mold elc. The critcrions for selecting the suitable orientation for casting have been addressed by several researchers [1, 2]. The build orientation ol RP parts is determined so as to

[^0]minimize the error and the cost $[3,4 \mid$. When the part orientation is chosen, the pouring direction or parting direction also gets fixed. From the given parting direction. one can obtain the parting line and then parting surface. This problem also has been addressed by several researchers $[5,6,7]$.
The parting surface is completely visible along the parting direction; otherwise, it cannot be called so. It consists of two loops. The inner loop lies on the object and the tonl designers refer to it as parting line; it will be called parting loop in this paper. The outer loop lies on the box and it will be called box loop in this paper. Note that each of these loops need not be planar:

Traditionally, tool designers prefer to have a planar parting surface as far as possible for ease of machining on a conventional machine. However, as the objects become more and more complex, this is no longer

Fig. 1. A Pair of Dic / Mold Halves.

Fig. 2. Splitting of a mold box by a loop when the parting surface is simple.
possible. If so, they prefer to select the flattest parting line so as to keep the parting surface also ats flat as possible [5]. In such an approach, the parting surface is very simple and it splits the box into almost two equal halves (Fig. 1). It is often trivial to split the die/ mold box using such a loop of the parting surface as illustrated in Fig. 2. As the parting surface and hence the box loop is contained within two opposite box faces without any wavy or spiky patterns, the box loop can be split into 4 face segments corresponding to each of the remaining fou box faces. Each of these segments will split the corresponding box face into two parts, one belonging to die/ mold half I and the other belonging to die/ mold half 2 . These halves will be called stock hatwes SH_{1} and SH_{2} in this paper.

It is no longer required to strive to keep the parting surlaces as flat as possible since CNC machines can handle all valid parting surfaces with equal casc. Therefore, the toof designer need not be constrained to select the flatest parting surface; he can instead concentrate on more important optimization criterions such as minimization of the area of the paring surface,

Fig. 3. Wavy parting surface of silicon rubber mold [8].
perpendicularity of the parling surface with respect to the parting direction etc. In fact. there are situations where one would deliberately create a wavy parting surface. For instance, in the case of RTV Silicon Rubher Molding, the parting surface will have a wavy outer loop and a smoother inner loop [8]. This wavy pattern, rather than location pins, is used to locate the mold halves against each other (Fig. 3).
Laminated Object Manufacturing (LOM) is an RP process in which the objects are built by pasting paper laminates together. It follows a "paste-then-cut" approach wherein each rectangudar laminate is pasted over the previous one and then the necessary part profiles are cut. The output of this process is a rectangular block with the required object trapped inside. Fig. 4 illustrates the LOM process developed by Helisys, USA. In order to enable extaction of the object. the remaining sheet

Fig. 4. Laminated object mannfacturing [Courtesy Helisys Inc., USA].

Fig. 5. Building ant object using OptiLOM.
in each layer is cut into square grids that grow into tiny tiles (see Fig. 4(a)). The operator' 'decubes' or removes these ciles using sharp rools and extracts the object (see Fig. 4(b)). Making use of the remaining stock as support structure and cutting grids on it to enable extraction of the object are very innovative ideas in this 'paste-andcut" approach. However, this method is very inefficient for two reasons: lirsily, cutting efficiency is poor since laser spends most of its time in grid cutting: secondly, decubing takes several hours. The authors have developed an attemative stock cutting method which eliminales grid cutting and converts the elaborate decubing operation into a simple disassembly operation. They have implemented this method in a software module called OptiLOM that stands for "Optimization of LOMRP" [9,10]. Optil.OM is presenlly available as an optional module of a commercial RP package Magics [II].

Extraction of the object from the slock box has analogy with the extraction of calsting from its mold the conventional LOM and OptiLOM respectively being analogous to sand casting and permanent mold casting processes. In OptiLOM, rather than fragmenting the remaining stock into tiny tiles, it is segmented into two stock halves that open about a parting surface of minimum arca. This oplimal parting surface is obtained for the comex hull of the object, rather than for the object itself. due to its complete visibility along any
pair opposite directions. The convex hull is futher segmented into the object and plugs. The plugs are so shaped that they do not get entangied inside the concave or 'undercut' regions of the object. The plugs whose drawing directions coincide with the opening direction of the stock halves are merged with the corresponding stock halves. The object, all the plugs and both the stock halves form the stock block. All these pieces are made together in the I.OM machine. For disassembly, lirss the convex hull will be extracted by opening the stock halves. Subsequently the plugs that fill the concave portions of the object will be extracted from the convex hull. Thus, OptiLOM eliminates grid cutting and decubing resulting in drastic reduction in prototyping time and improved quality of the prototype. Making a bracket using OptiOM is illustrated in Fig. 5. OptiLOM essentially is a preprocessor to the LOM machine; it accepts the STL file of the object as input and outputs the STL file of the object as well as those of the stock halves and plugs. More detailed description of OptiLOM can be found in [10].
There is, however, a major difference between the two applications of the present problem, viz., die/ mold design and OptiLOM. In die/ mold. the pair of opposite parting directions always coincides with the normals of one of the pairs of opposite faces of the box. On the contrary, the parting direction could be quite arbitrary in OptiLOM. Therefore, the authors encountered various
combinations of the parting surfaces in OptiLOM which are not very common with dies/molds. Therefore, they had to develop the most general methot of splitting the box using the outer loop of the parting surface to handle all possible cases.

More recently they found another application for the second part of the methodology. viz., splitting a box face loop into segment loops, in Boolean operators for polyhedral objects. In these Boolean operations, it is required to break large triangles into several loops. In this application, the loop referred as "box face loop" in this paper is not rectangular initially but is a triangle of one operand. The face segments come from the intersection of this triangle with the triangles of the other operand. The authors feel very strongly that the methodology proposed in this paper can be used with suitable modifications in many other applications.

Having presented the important applications, the problem will be detined in detail. This will be followed by a detaiked description of the algorithms and illustrations.

2. Problem Definition

A box loop $B L$ is lying on a stock box $S B$. It is required to split the stoch box $S B$ into two topologically valid parts about this loop BL so that they can be opened along the parting directions $(+\hat{d},-\bar{d})$ as shown in Fig. 6. The box as well as the conventions to denote its vertices, edges and faces is shown in Fig. 7. The stock box hass its opposite faces parallel to $X Y$. $Y Z$ and $7 X$ planes. The boundary loops of the six sides of the box, called Box Face Loops BFL, $(i \in[0-5]$), are denoted in terms of the box vertices as given in Table I such that they satisfy the right hand thumb rule w.r.t. the respective outward normal.
The box loop $B L$ has the following characteristics:

- The loop lies on the box.

It will not have knots. This is because it is the outer boundary of the parting surface and a parting surface cannot have folds.

- The number of the box faces the box loop can lie

Fig. 6. Pailr of parting directions.

Fig. 7. Stock box and the conventions.

Table 1. Details of the six face loops

Face Loop	Initial Vertices	Outward Normal
$B F L_{0}$	$(0,5,6,1)$	-X axis or $(-1,0,0)$
$B F L_{1}$	$(0,3,4,5)$	$-Y$ axis or $(0,-1,0)$
$B F L_{2}$	$(0,1,2,3)$	$-Z$ axis or $(0,0,-1)$
$B F L_{3}$	$(3,2,7,4)$	$+X$ axis or $(1,0,0)$
$B F L_{4}$	$(1,6,7,2)$	$+Y$ axis or $(0,1,0)$
$B F L_{5}$	$(4,7,6,5)$	$+Z a x i s$ or $(0,0,1)$

on can vary from 1 to 5 . Some of the possible cases are shown in Fig. 8(a-e). The resuln of splitting the box into a pair of stock halves can be seen for each case in the right hand side of Fig. 8.

- The box loop can pass through a corner of the box B or cut its edge.
- The box loop may bave some part of it coincident with an edge of the box.
- The box loop is assumed to be a 3D polygon.
- Box loop can have spikes. Spikes or saw tooth shapes on the box lonp can occur when the triangles

(a) Box loop lying on one face

(b) Box loop lying on two faces

(c) Box loop lying on three faces

(d) Box loop lying on four faces

(e) Box loop lying on five races

Fig. 8. Various cases of the box krop.
defining the ohject have high aspect ratios. Fig. 9 (a) shows SH_{1} and SH_{2} with a short spike. Under extreme condtions, there could be more spikes which could run across the stock face as shown in Fig. 9(b). This leads to a spiked parting surface that

(a) A small spike

(b) Spikes running across the stock face

Fig. 9. Spikes in the box loop.
is dilficult disassemble. Therefore, this condition has been bypassed.

3. Methodology

The methodology consists of two distinct parts. In the first part. the box loop is divided into face segments. Thus, each box face F_{i} will be associated with a set of face segments $\left\{F S_{i f}\right\}$ and the box face loop $B F L_{i} . B F L_{\text {, }}$ will be initialized with the four vertices of F, as given in Table I. In the second part, each of the tace segments $F S_{i j}$ is combined with an appropriate portion of the box race loop $B F L_{i}$ to form the segment toops $\left\{S L_{k}\right\}$. Every $F S_{i j}$ gives rise to one and only one segment loop. The following are the steps for spliting the box into the pair of stock halves:

- Adding faces not cul by the box loop to stock half I or 2 appropriately
- Splitting the box loop into face wegments
- Constructing bor face loops by inserting the end points of all the face segments of the face
- Idenlitying segmen loops of each box face
- Identifying the stock half for each segment loop and adding it after triangulation.

3.1. Adding faces not cut by the box loop to stock

 half 1 or 2 appropriatelyAs the box loop can spread to a maximum of 5 box faces, there will be one or more box faces which will not be touched by the box loop. Such box faces can be converted into a pair of triangular faces and added to SH_{1} or SH_{2} according to the visibility criteria. If the box face is visible along the parting direction $+d$, it is added to the $S H_{1}$; otherwise to SH_{2}. If the dot product d. $\hat{n}>0$ (where \hat{n} is the outward normal of the box face), the box face is visible. The pseudo-code for the same is given in Algorithm I.

Algorithm 1 Adding box faces untouched by the box loop to stock half I or 2 appropriately

```
For each box face \(F_{s}\)
    If number of face scgments is zero
    \{
        Triangulate box face:
        If \(d, \hat{n}>0\)
            add both these triangles to \(\mathrm{SH}_{1}\) :
        Else add them to \(\mathrm{SH}_{2}\);
    -
```


(a) First point inside a box face

(c) First point on an edge of the stock box

3.2. Splitting the box loop into face segments

Without loss of generality, let the stock half shown in Fig. 10 be SH_{2}. A typical box loop along with its direction is as shown in the figure. The first vertex of the box loop could be any of its vertices. Accordingly, the first vertex of the loop could lie either inside a box face (Fig. 11(a)), on an edge of the stock box (Fig.

Fig. 10. A box loop.

(b) First point on an edge of the stock box

(d) First point on a vertex of the stock box

Fig. I1. Various possibilities of the lirst poim in box loop.

II(b) \& (c)) or on a vertex of the stock box (Fig. Il(d)).
It is required to identify the segments of the box loop belonging to each box face. These segments will be referred as face segments. Each face segment will be uniquely identilied with a box face. It will have its start and cod verlices on an edge or vertex of the stock box and all its other vertices will lie inside a box face. In order to collect these face segments one after the other, it is preferable to have the first vertex of the box loop satisfy the following conditions:

- The first vertex of the box loop shall lie on an edge or vertex of the stock box
- Its second vertex shall lie inside a face of the stock box or at any other edge.

If the above conditions are satisfied, then, the first vertex of the box loop itself will be the first vertex of a face segment. Thus, all vertices of the box loop from the first vertex till the vertex that lies on an edge or vertex of the stock box will be the face segment. Therefore, it is desirable to have the first vertex of box loop as 6, 1, 0 and I for the cases shown in Figs. I 1(a), (b), (c) and (d) respectively. This is achieved by cyclically shifting the vertices of the box loop till the first vertex satisfies the above two conditions. Then, a face segment is created by copying the points from the box loop till an edge or vertex point is reached. Algorithm 2 describes this procedure. The first part of this algorithm does the cyclic shifting of the vertices and the second part extracts the face segment. This

Ahgorithm 2 Separating a face segment from the box toop

```
// Cyclically shifling the vertices of box loop
II
If all vertices of the box tace have been ticked.
    Exit;
While ((lirst verlex of the box loop hits been ticked) or
        (firsl vertex of the box loop\mathrm{ is neither on an edge nor on a venex}
        of stock trix) or
        (tirs1 and second vertices lie on the same edge))
    Cyclically shift all vertices of box face by one place:
// Moving vemices from box foop fo lace segmena :
##
i=0):
while (Irue)
|
    Add the i-th vertex of the box loxop to the face segment:
    If (the i-th verlex is either on ath edge or a venex ol the stock box)
        break the while loop;
    If ii !=0) Tick thar vertex for having used:
    i=i + l;
|
```

algorithm will be called repeatedly till the entire box loop is divided into face segments.

This algorithon will be called repeatedly till all the face segments are separated from the box loop, i.e., till no more vertices are left in the box loop. Note that each face segment belongs to a unique box face and each box face may have more than one face segment. For instance, box face F_{0} will have 3 face segments for the case shown in Fig. 9(b). Therefore, any face segment

Fig. 12. Three ponsible cases of closed face stegments.
will be represented with two subscripts as $F S_{i j}$ where $;$ refers to the face it belongs to and j refers to its count in that face.

It may be further noted that the face segments are open curves most of the time. The end points of any open face segment could be on a vertex or edge of the box face. Accordingly there could be several possible cases for the open face segments.
When the box loop is contamed within a face, it degenerates into a single closed face segment. Four possible cases of closed face segment occur as shown in Fig. 12. The closed face segment shown in Fig. 12(a) is completely inside the face. In Figs. 12(b) \& (c), the closed face segment touches the face loop at one vertex or edge. The closed face segment of Fig. 12(d) hats a part of it coinciding with the face loop.
If the fare segmem is a closed one, it is added to $\mathrm{SH}_{\text {}}$ or SH_{2} according to the visibility criteria. The remaining part of its face is added to the other stock half.

3.3. Constructing box face loops

All the 6 box faces are inilialized by the four vertices each as shown in Table I. Each face F, has an array of face segments $/ S_{i q}$. For instance, box lace F_{0} of Fig. $9(b)$ has three face segments, viz., $A B, B C$ and $C D$ as shown in Fig. 13. The pair of end points of each face segment $F S_{i j}$ is inserted into the box face loop $B F L_{i}$ at the corresponding edge so as to maintain the cyclic nature. The same is illustrated in Fig. 14 tor box face

Fig. 13. Box face $F_{1)}$ with 3 face segments $\mathrm{AB} \equiv F S_{\{x,}, \mathrm{BC} \equiv$ $F S_{\text {II }}$ and $C D=F S_{15}$.

Fig. 14. Construction of a tace loop.
F_{0} of Fig. 9(b).

3.4. Identifying segment loops of a face

At this jumeture, the face segments for each of the six box faces have heen identified and each of the six box face loops includes the end points of the corresponding face segments. With this infomation, it is possible to divide the box face loop into a set of segment loops. Let $F S_{i j}\left(j \in\left[0-\left(n_{i}-1\right) \mid\right)\right.$ be the face segments of $i^{\text {ih }}$ box face $F_{;}$and n_{r} is its number of face segments. Let $B F L_{i}$ be the corresponding box face loop. All these face segments will be open. The procedure to deal with the closed face segment has already been discussed in Section 3.2. The procedure to divide the box face loop $B F L_{i}$ into a set of segment loops $S L_{i j}$ using the open face segments will be explained here.

Table 2. Comparison of splitting the box loop into face segments and forming face loop from a face segment

Splitting the Box Loop into Face Segments	Forming Face Loop from Face Segment
Irput loop is box loop.	Inputs are tace segment and box face toop.
The outputs are the face segments.	The output is the face foop.
Vertices of the box loop ate cyclically shifted so as to get the desirable characteristics of the first two vertices.	Vertices of the box fate bexp are cyclically shified so as to get the desirable characteristics of the first vertex.
The desimable chatacteristics are that - lle first veitex shall be on an edge or vertex of the stock box and	The desiralle characteristic is that the end points of the same lace segment stall be encountered first when fraversed from the first vertex of the box face loop in both the directions.

Each open face segment will make a closed loop along with a part of the corresponding box face toop. Subsequently, this loop will be added to SH_{1} or SH_{2} according to the criteria discussed later in Section 3.5 . When such loops are added to SH_{1} or SH_{2}, the corresponding face segment is deleted from the box face and the box face loop will be uplated by subtracting the region corresponding to the segment loop.
Splitting the box loop into face segments and forming segment loops from face segments can be thought of inverse to each other or duals. A loop is split into open segments in the former case and a loop is formed from an open segment in the latter casc. So the same approach of moving cyclically the vertices of the loop will be employed here too; the loop is box loop in the former case and face loop in the latter case. However, the criterion to be satisfied by the first point is different in both cases. In the later case, when marched from the first vertex on both the directions, the first encountered segment shall be the same. A comparison between these duals is presented in Table 2.
When the first vertex is adjusted to meet the desired condition, the corresponding face segment will break the box face loop into two parts. The part of the box face loop that contains the first vertex and the face segment will form a loop which will be referred as
segment loop. Each segment loop will have a tlag called 'Is_Reversed' which is 'false' by default. The direction of the segment loop will be maintained to be same as that of the box face loop. If it is required to reverse the face segment in order to maintain this direction, then the 'Is_Reversed' flag will be set to 'true'. After forming the segment toop, the vertices of the box face loop between the face segment and the first vertex (inclusive of the first vertex) are deleted and the vertices of the face segment are added to the face loop white maintaining the original direction of the face loop. Finally the face segment is deleted from the face. This procedure is given in Algorithm 3.
The sequence of forming the segment loops and updating the face loop are shown in Fig. 15. The initial box face loop shown in Fig. 15(a) is such that the face segment $F S_{3,0}$ is encountered when traversed from the first vertex. Therefore, the vertices of this box face loop do not require any cyclic shift. The first segment loop $S L_{000}$ is formed and the box lace toop is updaled as shown in Fig. 15(b). Figs. 15(c) and (d) show the formation of second and third segment loops and the corresponding updated box face loops. The vertices of the box face loop do not require cyclic shift in these two cases as well. As all face segments have been cxhausted, the remaining box face loop is added as the

Algorithon 3 Forming a segment loop from the face segment and box facc loop

```
// Ensuring that firs ventex of box face loop is such that the lirst
// ewoountered lace segment is the same when marched from its lirst vertex
// in both clirections:
-White (number of face segments of the lace >0)
    |
        - Traverse the box face loxop in the forward direction till in end point of any face segment is encountered; I el this segment be FS,
            and the corresponding verlex of the box face loop be m:
            - Traverse the box face lexop in the reverse direction till an end point of any face segment is encountered, Let this segment he FS,
            and the conespondeng ventex of the box face koop be m:
            - If (j==k)
                break the while lexop:
            Else
                cyclically shilt all vertices of box face by one place:
l
// Fomming the segment loop:
// -------------------------
-Add the vertices of the box face hoop fromm-1 to 0 to the segment loop;
- If the i-th vertex is the last veriex of the lace segment FS,t
    I
        Reverse the face secrument:
        Is_Reversed = Iure:
    J
- Add all the vertices of the face segmend to the segment loop:
- Add the vertices of the box face loop liom 0 to n-I to the segment loop ;
// Updating the box face loop:
/f -------...---..............
-Delece the verices of the box face loop from molild the end.
- Delete the venices of the box lace loop from (0 ton a :
- Reverse the face segment :
- Add the verices of the face segment to hox lace loop:
```


Fig. 15. Formation of a segment loops.
fourth segment loop. This way, the face loop is broken into 4 segment loops.

3.5. Identifying the stock half for each segment loop

The next step is to identify the stock half to which each segment loop belongs. As a flag 'Is_Reversed' is associated with each segment loop. this task is very straight forward. If Is_Reversed $=$ false, the segment loop is added to stock half SH_{1}; otherwise, it is added to stock half SH_{2}. Finally the face segment should be triangulated and added to the appropriate stock half.

3. Conclusions

In tool design and some RP applications, it is required split a block surrounding an object into two parts to cnable the extraction of the object. While identification of optimal orientation and calculation of parting surface have been researched fairly well, separating the boundary of the box into topologically valid halves hats not received adequate attention. While this task was not very complicated in tool design. the RP applications encountered by the authors could create the parting surface spreading anywhere from one to five faces of the box. thus making the splitting
reasonably complex. The methodology dcveloped and successfully implemented by them has been presented in this paper. More recently they found another application for the second part of the methodology in Boolean operators for polyhedral objects. The authors feel very strongly that the methodology proposed in this paper can be used with suitable modilications in many other applications.

Nomenclature

Stock box (B) - The box surrounding the object.
Box tace (F_{3}) - Rectangular lace of the box. The stock box will have 6 such box faces.
Stock halves ($S H_{1}$ - These are obtained by splitting the
and SH_{2}) stock box hy the parting surface.
Parting direction - This is a pair of opposite directions
$((+\hat{d}, \hat{d})) \quad$ along which the stock halves $S H_{1}$ and SH_{2} open.
Parting surface - The surface that splits the stock how
$(P S) \quad B$ into stock halves SH_{1} and SH_{2}. This will have two loops, viz., parting loop and box loop.
Pauting kop ($P L$) - This is the inner loop of the parting surface. Tool designers refer to it as "parting line". This need not be planar.
Box loop (BL)

- This is the outer loop of the parting surface. It lies on the stock box. This

Box face loop (BFL ${ }_{i}$)
ace segment
($F S_{i j}$)
Segment hoop ($S L_{i j}$)

Is_Reversed
too need not be planar.

- Loop defining the boundary of a stock face. $B F L$, will be initialized with the four vertices of the corresponding stock face. However, subsequently the ends of its face segments also will be insered. This also keeps peteing updated and hence may not remain rectangular till the end.
This is the part of a box loop belonging to a box face. $k S$ is the j-th face segment of the i-th face.
One segment loop will be prepared trom each face segment $F S_{i j}$. Each of these loops will be triangulated and added to either SH_{1} or SH_{2}.
This is a flag which is set to true of the direction of the face segment is reversed while forming the segment loop. If this tlag is false. the segment loop will be added to $S H_{1}$: otherwise. it will be added to SH_{2}.

References

|1| Chen, L. L., Chou, S. Y. and Woo, T. C. (1993), "Parting directions for mould and die design", Computer-Aided Des., 25(12), 762-768.
[2] Chen. L. L., Chou. S. Y. and Woo. T. C. (1995), "Partial visibility for selecting a parting direction in mokl and die design", Journal of Manufacturing Systems, 14(5), 319-

Karuna P. Karunakaran is an Associate Professor in Mechanical Engineering al IIT Bombay. He received his B.E. Hons. in Mechanical Engineering from Anna University in 1984, M. Tech. in Aircraft Production Engineering from IIT Madras in 1988 and Ph.D. from IIT Kanpur in 1994. He is a Humbold Fellow. His research interests are Rapid Prototyping \& Tooling. CNC, Automation and Computer Graphics.
P. Vivekananda Shanmuganathan is an Assistant Professor in Mechanical Engineering at VIT. Vellore. He received his B.E. in Mechanical Engineering from Madurai Kiumaraj University in 1992. M.E. in Computer-Integrated Manufacturing from Bharathia University in 1996 and Pl3.D. from IIT Bombay in 2003. His research interests incluike Walking Robots. Machine Vision, RP\&T and Computer Graphics.

Karuna P. Karunakaran

P. Vivekananda Shanmuganathan

Anoop Kheerwal will complete his B.Tech. in Mechantical Engineering all ITT Bombay in April 2004. He is doing his bachelor thesis entitled "Applications of Visibility-Based Algorithms for Rapid Prototyping". His research interests are in the areas of CAD/CAM, particularly Rapid Prototyping and Computer Graphics.

Rohitashwa Shringi is a Reader in Koli Government Enyineering College and is pursuing Plı.D. in Mectanical Engineering an ITT Bombay. Ifc received B.E. in Production Engmeering from Punjab University, Chandigarh in 1984 and PGDIE in Industrial Engincering from NITIE. Mumbai in 1991. His research interests include process conarol, simulation, solid modeling and CAD/CAM.

Anoop Kheerwal

Rohitashwa Shringi

[^0]: Corresponding author:
 Tel: +91-22-2576-7530
 Fax: +91-22-2572-6875
 E-mail: karwa@me iithac in

