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Generalized Cylinder based on Linear Interpolation by Direction Map
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Abstract — We propose two algorithms to generate (1) polygonal meshes and (2) developable surface patehes for generalized
cylinders defined by contouss of discrete curves. To solve the contour blending problem of gencralized cylinder, the presented
algorithms have adopted the algorithm and related properties of LIDM (linear interpolation by direction map) that interpolate
geometric shapes based on direction map merging and grougp scaling operations. Proposed methods are fast 10 compute and

easy to implement.
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1. Introduction

Generalized cylinder (GC) is a well-known modeling
technique to design tube-like shapes whose surfaces are
constructed over skeletal frames composed of a hinite
sequence of contours (2D cross-sectional curves) that
are systematically arranged on a 31D spine curve.
Generally, the spine curve determines (he overall shape,
and contours expresses detatled leatures on the surlace.
By interpolating (or blending) the given contours, we
can generate a one-parameter family of contours which
conceptually sweeps along the spine curve while
changing its orientation and shape. Using this general
sweep analogy, we can represent a GC as a tensor
product surface with two paramelers representing the
spine and the contour directions, respectively. After
generating the surface from the initial design, we can
interact with the skeletal curves or the surface itself to
change the shape characteristics. With these simple
building blocks and mechanisms coupled with other
geametric modeling techniques. we can design various
kinds of artificial shapes (i.e., pipes, vessels, and tires)
and natural shapes {1.e., human bodies, flowers, and
seashells) as GC models for CAD and computer graphics
applications.

Previous researches have focused on various GC
topics such as surface representations, deformation and
interaction techniques, and orientation arrangements.
Note that, to be integrated with general-purpose
geometric modeling tools, it is a common practice to
generate surface models directly from the intrinsic
defimtion of GC: ie., a spine and contour curves.
Hence, there arc abundant research works presenting
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how to represent GC surfaces as a polyhedral mesh | 1],
Bezier |6]. B-splinc {14]. or NURBS surfaces [4] irom
the given skeletal frames. Some representation methods
focus on the direct ray-casting [ 4] without converting
into specific representations. We can find researches
presenting special representations suitable for interactive
deformation [4, 6]. Contour arrangement with smooth
orientation change is simply achieved by embedding a
contour on the normal plane of Frenet frame |3, 4. 6. 14].
For better results, rotation minimizing [rame can
optimizes distortion [7]. As a more sophisticated topic,
Gansca et af. deals with the problem of self-intersection
avoidance in the generation of GC surfaces [5].

Another inportant GC 1topic is contour blending.
which is required 1o generate a one-parameter family of
contours continuously. One of the fundamental steps
for contour blending is to set up comespondences between
features of neighboring contours. However, in most of
the previous approaches, these correspondences are
assumed 1o be described manually or implicitly. For
example, although very complicated conlours were
illustrated in B-Spline surface approach of de Voogt
et ul. |14], no explicit step is specified for selling
correspondences hetween every pair of control points
from adjacent contours. This is partly because every
contour has the same number of control points, which
may lead (o trivial correspondences in a certain casc.
However, this 15 not the case of real-world examples
where correspondences are rather complicated to be
described manually or assumed implicitly.

This correspondence problem is also fundamental in
morphing. (Note that morphing is composed of two
steps: (1) correspondences and (2) path erpolation.)
When key-frames are not so complex. existing geometric
morphing lechniques works finc. However, we can
hardly expect full automation: for better result, a human
intervention is inevitable. For example, when we want
to generale in-betweens interpolating given key-frames
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representing different postures of a dancer |13], we
coukl hardly expect one of dancer’s arms is never
corresponded to one of legs based on geometric
intcliigence of the previous algorithms. In addition, most
of morphing techniques cannot express interpolating
path in the form of parametric curves, If we consider
contours as key-frames, parametric form of moving
path s criucal in representing a GC surface.

In this paper, we suggest (o adopt a geometric
morphing technique referred to as LIDM (linear
nterpolation by direction map) proposed by Lee ¢f al.
[10] 10 solve both correspondence and parametric
interpolation problems in contour blending. LIDM s
closely related to previous morphing technique referred
to as LIMS (tinear interpolation by Minkowski sum)
[9, 12], but more generalized and computationally
eflicient.

In addition, we present methods to construct GC
surface with (1) polygonal mesh and (2) developable
suiface patches using (he geometric properties of LIDM
[8]. The overall computation of proposed methods 1s
fast enough o be applied in interactive geometric design
applications.

The remainder of this paper is organized as follows.
In Section 2, we describe a typical representation of
parametric GC surface and explain why contour blending
problem is important in GC. In Section 3, we propose
to adopt LIDM as a contour blending method in GC
design. In Section 4, we describe how to build a
polygonal mesh of GC whose contours are blended by
LIDM. In Section 5. we describe how to generate
developable surface patches representing GC. In Section
6, we demonstrate the example results.

2. Parametric Representation of GC

For a parameterized spine curve K{«) in 313, we
can choose the normal plane N{u,) al K(iy) as the
contour plane, which is intrinsically defined by Frenet
frame |3]. (As in Chang et «f. |4], we can define the
orientation more generally ~independently of diffcrential
characteristics of the given spine curve.) In this case,
N(uy) 1s spanned by ils normal and binormal vectors tn
3D, n (i) and n, (i), and iis local origin is placed at
K{uy). When a 2D contour curve (:’,,"(v)z(x,,o(v), V)
is embedded in N(utg), it has the following parametnc
form:

C, () =x, (v)-n {ugy+y, (v)-n () (1)
However, considering thal every contour C,(v) at K(x)
may have a different shape, above parametric form

should be lurther generalized as follows:

C,(vy=x,(v)-nfu)+y,(v) nlu)

=Clu,v)=x(te,v)-n () + 1 {u,v)-n (i) (2)

When we consider GC as a sweep surface of a moving
contour, the parametric form of GC swrface § 15
generated by sweeping C,(v) along K(u) as follows:

S=8u,v)=C(1,v)+K(u)
=x(2,v) 1 (u)+y(,v)-n fu)+ Klu) (3)

In the above equation, we assume that a pair of
coordinate functions (x,(v), y,(v)} is defined ar every
point K{u) of thc spine curve; however, a human
designer cannot specify infinite number of coordinate
functions manually at each value of w. This is the point
where contour blending problem arises: how do we
sinoothly interpolate a finite set of key-frame contours
o generate a certain number of in-between contours
required to satisfy the given precision critera.

In this paper, 10 be more focused on Lhe blending
problem itself, we can confine the bases of the contour
planc to be fixed over u. In this case, a GC surface has
a following parametric form:

S v)=Cluv)+ K) =x(vy-n +y(v)-n +K(n)  (4)

This is the typical case when the spinc curve is a
straight-line segment. The examples presented in this
paper are of this type.

3. Contour Blending by LIDM

Recently, Lee et al. [10] proposed an efficient
algorithm referred to as LIDM (linear interpotation by
direction map) to interpolate Llwo polygonal shapes.
Moreover, a designer can specity additional control
shapes, which enables a Bezier-curve (or blossom) like
control structure. The result can be represented as a
pacametric form of a one-parameter family of polygons.
Specially, the automatic correspondences work quite
well for relatively simple shapes rather than the
complex ones of character animations. Hence, wc
propose to adopt LIDM for contour blending in GC
design.

In LIDM, a polygon is represented by a circular list
of direction vectors, which 1s referred o as a direction
map. A direction vector is defined as a connecting veclor
of two neighboring polygon vertices. (See Fig. 1. The
nwmber describes the cotrespondence between a direction
vector and an edge.) A group of consecutive direction
vectors may represent a geometric feature such as a
pocket. We assuine that. in LIDM, the dircction itself
of any direction vector 1s mvarianl. Hence, (1) the
sequence of directions and (2) lengths of individual
dircction vectors are deciding factors of a shape
feature.

We can generate a new polygon by merging two
direction maps, each of which represents different
shapes. This step corresponds to blending features from
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Fig. 1. Shapes (upper row) and their direction maps (lower row):
() pentagon, (b discrete oval, and {¢) 5-star.
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Fig. 2. Convolution merging: (a) the merged direction map of
Fig. Ma) and ¢b), (b) newly generated shape from {a). (c) the
merged direction map ol Fig. [(b) and {c). () newly generated
shape with sclf-intersections, and () bymmed resull of (d).

different polygons. In merging operation. we change
neither the direction nor the length of any direction
vector. Only a new merged sequence is generated by
applying a certain geometric correspondence rule.
Among various feature correspondence strategies,
convolution merging (see Fig. 2) is closely related to
Minkowski sum or convolution operations, where vertex-
wise fecature correspondences are set up by geometric
rules [[0]. Note that [LIMS (linear interpolation by
Minkowski sum} s a special case of LIDM [9. 12].
Another merging method is convex-hull merging (see
Fig. 3) where no selt-intersection occurs; hence,
trimming 8 not required. For convex shapes, the
convalution and convex-hull merging generate the
same resull.

To generate a one-parameter famiy of in-between
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{c) (d)

Fig. 3. Convex-holl merging: (a) the merged direction map of
Fig. 1{a) and {(b). (b) newly generated shape from (a), (¢} the
merged direction map of Fig. 1(b) and (c). (d) newly generated
shape without self-intersections.

shapes. we have to smoothly change the degree of
dominating featurc. In LIDM. this is accomplished by
changing the length of direction vectors using group
scaling operation where different values of scaling
factors arve assigned to each group of direction vectors.
(Note that each group is identified by a group id, which
is assigned to every direction vector in a merged direction
map.) The examples of scaling factors can be Bezier or
blossom basis functions. Using both merging and group
scaling operations, Lee er af. proposed interpolation
algorithm as follows (for details, we refer readers to

[£0]):

Algorithm 1: LIDM
Input: A merged direction map: D« Dy+---+D,,; and
Scalar functions for the group scaling operation:
B={bo(s), ... by{1)}; and
The blending parameter : r.
Output: A contour generated by LIDM algorithm:
C=C(1).

Fig. 4 is an example output ot T.IDM algorithm: {a}
two inpul direction maps represent a tiangle and an
octagon; (b) by group scaling operations {in this
example, with tinear scaling functions), the dominating
clirection vectors become longer and the others shorter,
however, {c) after the lengths are normalized into one,
we find that the directions are variant over f. Fig. 5
shows a result for the four input direction maps: the
initial circle becomes longer in width and height in
order according to the sequence of control polygons;
and comes back to a circle satisfying the final key-
frame. In Fig. 5, we used cubic Bernstein polynomials
as blending functions.
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Fig. 4. (2) Smoothly changing polygons, (b) their direction maps. and (¢) their normalized direction maps.
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Fig. 5. (a) Conwrol polygons: terminat polygons {both circles) and additional polygons {(wo quadrangle), (b) the generaled sequence.

4. GC in Polygonal Mesh

In this section, we describe how to build a polygonal
mesh of GC whose contours are blended by LIDM. For
in-hbetween shapes generated by LIDM, there exist two
interesting geometric properties [8]: (1) all the shapes
have the same normalized direction maps over «; and
(2) the number of vertices (or edges) of generated
polygons is constant over . Two properties hold unless
some edges vanish or shrink aller trimming. Based on
these properties, 1t is straightforward to build triangular
{or quad) meshes by connecting corresponding vertices
(rom neighboring contours. {See Algorithm 2 below.)

Algorithin 2: LIDM_GC_POlY_MESH
Input: Two lerminal contours and additional control
contours: C=1{C,, ..., C,); and
Scalar functions: W= |dyir, ..., b0}, and
/* Le., Bernstein polynomials */
The number of in-between contours including
two terminals: (z+1).
Qutput: A Polygonal mesh representing a GC surface:
M.
I. DeDy+---+D,;
% merge direction maps: N;=DM(C;) */
iDLl 5
£ 12 the number of direction vectors {d;} in D*/
3. Copove—LIDM(D,B,0);
£ the inttial contour C{)) #/

4. For i=1 ton
S Ie=f=A1 ", 7% At=/n %
6. Cy =C(H=LIDM (D, B, 1);
/4 Assuming [ DM (C{)I s invanant, */
7 M,
8. For ;=1 to !

/* Construct a sub-mesh M, connecting C,,...

AN 5

9. M, —two twiangle (or a quadrangle)
constructed using the corresponding
4 vertices: j-th and (j+[)-th
vertices Ol Cpep and Cy 3

10. M. «~M,uUM, ;

11. MeMUM,

12, Coreve=Clae

In the above algorithm, DM(C,) represents the
construction operation of a direction map for the
contour ;. When the above algorithm generates one
intermediate contour C(y;), it evaluales one LIDM
operation for each parameter value r=r. Note that,
however, direction map merging is computed just once

(d)

Fig. 6. Build a polygonal mesh of GC: (a) control polygons (the
same as in Fig. 3) are artanged on a straight line. (b) in-between
contours generated by LIDM, (c) the generated polygonal mesh.
and {d) shaded resuli of {¢).
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during the whole execution since the correspondences
are assumed static. Each sub-mesh M; is generated by
connecting (wo consecutive contours. The edge
connection rules are simple. For example, to gencrate
two triangles: (1) connect two starting points, (2) two
end points of comesponding edge, and (3) choose onc
diagonal. The final mesh M is generated by combining
all the sub-meshes. Fig. 6 shows an example of
execution steps of Algonthm 2.

5. GC in Developable Surface Patches

In this section, we describe how to generate developable
surface patches representing GC. A developable surface
is a special type of ruled surtace, where all the points
from one ruling have the same langent plane |3].
Specially, a developable surface can be unfolded
(developed) into a plane without stretching or tearing.
Hence, it has a wide-range of applications in
manufacturing based on sheet metal-like matenals. The
recent works shows that a developable surface has a
nice structure of controllability [2] and a neat
representation into NURBS [ 11].

If a ruling direction s fixed over the enlire patch, it
generates a cylindrical developable surface. In our
application, a direction vector becomes a ruling whose
direction is invanant. Hence, every direction vector (or
an edge of a polygonal contour) corresponds to one
developable surface patch bounded by (wo boundary
curves. Morcover, boundary curves are defincd by
vertices of control contours.

Algorithm 3: LIDM_GC_DEV_SURF

Input: Two terminal contours and additional control

contours: C={C,, ..., C,}; and

Qutput: / control points set for profite curves:

PPy e BPit.  1F B Plnesss Faal®s

1. DeDy+-a D

/* merge directions maps: £2,=DM({A,) */

2. {«|D1; .

/* 11 the number of direction vectors {d,} in > */

3. For i=1 to !

/* For cach profile curve £, detined by a chrection

veelor (7, *f

e < the i-th direetion vector of £
For j=0 to n
/* Find (he control point set P, for F, */

6. d «find a dircction vector satisfies
two conditions: (1) the counter-
clockwise-nearest direction vector
from dewe, 5 and (2) its group id is
is é

7/ P+~ the end pont ot «

3. P—PuiP;}.

=

Algonithm 3 finds a group of control points
representing cvery pair of boundary curves (referred to
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as profile curves, here) per a direction vector. The
interesting property is that. it we apply Bemstein
polynomials B;"(r) of degree m as scaling factors for
the group scaling operation, the developable surface is
a Bezier surface of degree (1. m). For example, i-th
developable surface patch 8 0 v) defined by 2(m+1)
control points (i.e., {Pig,..es Pl and {Prrgyees Pioin))
found in Algorithm 3 has the following tensor product
form:

M+

${0,0)= 3, 3Py BL0BI) 6)

k=i j=0

Actually, the type of two boundary curves in a single
developable surface patch is defined by how we blend
contours using a certain scaling factors.

Fig. 7 shows an example of exccution steps of
Algorithm 3. In Fig. 7 control contours in pink are the
same as in Fig. 5 and 6: (a) three consecutive green line
scgments represents a control polyline for a profile
curve; (b) a developable surtace patch is defined by
consecutive profiles curves (in light blue). Moreover, its
ruling (a straight-line segment in hight blue) is the
morphing edge sweeps along protile curves: (¢) all the
control polylines found; (d) all the control polylines

' 2, Jdine
Tirabile ‘()\m:ol Polyline
Curve
] f
3 F \ A
X \ .
[ | .
¢ Developable
surface patch
(a) (b)

Fig. 7. Computing contol points of developable surface patches:
{a) two sets of control points and profile curves defining a
developable surface patch, (b) a dircction vector (i.e.. a ruling)
sweeps along profile curves. {¢) all the control points for each
profile curve, {d) parametic evaluation ol profile curves, (e)
evaluated prohile curves, and (I} parametric evaluation of contows.
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Fig. 8. Examples of GC generated using proposed algorithms.

and corresponding profile curves; and {e) all the profile
curves. For display, we can adopt existing shading
algorithmy for Bezier surfaces. If we want to generate
m-between contours, we can connect the points from
every prohle curves evaluated at the same value in
sequential order, as in Fig. 7-(d). Note that. however, it
is not easy to generate a parametric form of profile
curves based on contowr-wise evaluation as in
Algorithm 2.

6. Result and Discussion

Algorithms 2 and 3 are of complexities Oz {) and
(Al respectively. (n: the number of evaluated
contours, {: the number of direction vectors, m: the
number of contrel contours) The overal] computation
of proposed methods is fast enough to be implemented
in interactive geometric design applications.

Fig. 8 illustrates surface representation of generalized
cylinders defined hy two cross-sectional polygons and
some of addiwonal control shapes amanged on a straight-
line spinc: (a) an onion-like shape in mesh representation,
(b)-(¢) more complex examples using non-convex control
contours, (d) mesh representation of a bowl, and (c)-(g)
design of [lowers ustng profiles curves ol developable
surface patches. Note that (d) and (¢) were modeled
using the same contours.
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