C-EXISTENCE FAMILY AND EXPONENTIAL FORMULA

Young S. Lee

AbStract. In this paper, we show that an exponentially bounded mild C-existence family can be represented by the exponential formula.

1. Introduction

Consider the following abstract Cauchy Problem (ACP)

$$
u^{\prime}(t)=A u(t), \quad t \geq 0, \quad u(0)=x
$$

where A is a linear operator in a Banach space X.
Existence families of bounded linear operators on X has been introduced as a generalization of the strongly continuous semigroup (see [1, 2]). In this paper, we establish the exponential representation of an exponentially bounded C-existence family for A.

Throughout this paper X will be a Banach space and the space of all bounded operators from X into itself will be denoted by $B(X)$. For an operator A, we will write $D(A)$ for the domain of A and $R(A)$ for the range of $A .[D(A)]$ is the normed space $D(A)$ with $\|x\|_{[D(A)]}=$ $\|x\|+\|A x\|, x \in D(A)$. By a solution of (ACP) we mean a function $\left.u(t) \in C([0, \infty),[D(A)]) \cap C^{1}([0, \infty), X)\right)$ satisfying (ACP). By a mild solution of (ACP) we mean a function $u(t) \in C([0, \infty), X)$ such that

$$
\int_{0}^{t} u(s) d s \in D(A) \text { and } \frac{d}{d t}\left(\int_{0}^{t} u(s) d s\right)=A\left(\int_{0}^{t} u(s) d s\right)+x
$$

for all $t \geq 0$.

Let C be an operator in $B(X)$. The strongly continuous family of operators $\{S(t): t \geq 0\} \subset B(X)$ is called a mild C-existence family for A if for each $x \in X$ and $t \geq 0$
(i) $\int_{0}^{t} S(s) x d s \in D(A)$
(ii) $A\left(\int_{0}^{t} S(s) x d s\right)=S(t) x-C x$.

Let $\{S(t): t \geq 0\}$ be a mild C-existence family for A. Then $u(t)=$ $S(t) x$ is a mild solution of (ACP) with $u(0)=C x$ and $u(t)=x+$ $\int_{0}^{t} S(s) y d s$ is a solution of (ACP) for all x with $A x=C y$.

2. Exponential Representation

We start with the following lemma given in [3].
Lemma 2.1 Let $h_{1}, h_{2} \in C([0, \infty), X)$ satisfying $\left\|h_{1}(t)\right\|,\left\|h_{2}(t)\right\| \leq$ $C e^{\omega t},(t \geq 0)$ for some $C, \omega>0$. Suppose A is a closed operator in X such that for $\lambda>\omega$

$$
\int_{0}^{\infty} e^{-\lambda t} h_{1}(t) d t \in D(A) \text { and } A\left(\int_{0}^{\infty} e^{-\lambda t} h_{1}(t) d t\right)=\int_{0}^{\infty} e^{-\lambda t} h_{2}(t) d t
$$

Then $h_{1}(t) \in D(A)$ and $A h_{1}(t)=h_{2}(t)$.
Theorem 2.2 Let $M, \omega \geq 0$ and let $\{S(t): t \geq 0\}$ be a strongly continuous family of operators in $B(X)$ satisfying $\|S(t)\| \leq M e^{\omega t}$ for $t \geq 0$. Suppose A is a closed operator in X and $\lambda-A$ is injective for $\lambda>\omega$. Then the following statements are equivalent:
(1) $\{S(t): t \geq 0\}$ is a mild C-existence family for A.
(2) $R(C) \subset R\left((\lambda-A)^{n}\right)$ and

$$
(\lambda-A)^{-n} C x=\frac{1}{(n-1)!} \int_{0}^{\infty} t^{n-1} e^{-\lambda t} S(t) x d t
$$

for $\lambda>\omega, x \in X$ and a positive integer n.
Proof. Suppose (2) is satisfied. Then

$$
\begin{aligned}
A(\lambda-A)^{-1} C x & =A\left(\int_{0}^{\infty} e^{-\lambda t} S(t) x d t\right) \\
& =\lambda A\left(\int_{0}^{\infty} e^{-\lambda t}\left(\int_{0}^{t} S(s) x d s\right) d t\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\lambda^{-1} A(\lambda-A)^{-1} C x & =(\lambda-A)^{-1} C x-\lambda^{-1} C x \\
& =\int_{0}^{\infty} e^{-\lambda t}(S(t) x-C x) d t
\end{aligned}
$$

Thus we have

$$
A\left(\int_{0}^{\infty} e^{-\lambda t}\left(\int_{0}^{t} S(s) x d s\right) d t\right)=\int_{0}^{\infty} e^{-\lambda t}(S(t) x-C x) d t
$$

By Lemma 2.1, $\int_{0}^{t} S(s) x d s \in D(A)$ and $A\left(\int_{0}^{t} S(s) x d s\right)=S(t) x-C x$. Therefore $\{S(t): t \geq 0\}$ is a mild C-existence family for A.

Suppose $\{S(t): t \geq 0\}$ is a mild C-existence family for A. Since A is closed,

$$
\begin{aligned}
A\left(\int_{0}^{\infty} e^{-\lambda t} S(t) x d t\right) & =A\left(\lambda \int_{0}^{\infty} e^{-\lambda t}\left(\int_{0}^{t} S(s) x d s\right) d t\right) \\
& =\lambda \int_{0}^{\infty} e^{-\lambda t}(S(t) x-C x) d t \\
& =\lambda \int_{0}^{\infty} e^{-\lambda t} S(t) x d t-C x
\end{aligned}
$$

So we have $C x=(\lambda-A)\left(\int_{0}^{\infty} e^{-\lambda t} S(t) x d t\right)$. Therefore

$$
R(C) \subset R(\lambda-A) \text { and }(\lambda-A)^{-1} C x=\int_{0}^{\infty} e^{-\lambda t} S(t) x d t
$$

Assume that $(\lambda-A)^{n}\left(\int_{0}^{\infty} t^{n-1} e^{-\lambda t} S(t) x d t\right)=(n-1)!C x$. Then

$$
\int_{0}^{\infty} t^{n} e^{-\lambda t} S(t) x d t=\int_{0}^{\infty}\left(\lambda t^{n}-n t^{n-1}\right) e^{-\lambda t}\left(\int_{0}^{t} S(s) x d s\right) d t
$$

Since A is closed,

$$
\begin{aligned}
A\left(\int_{0}^{\infty} t^{n} e^{-\lambda t} S(t) x d t\right) & =\int_{0}^{\infty}\left(\lambda t^{n}-n t^{n-1}\right) e^{-\lambda t}(S(t) x-C x) d t \\
& =\int_{0}^{\infty} \lambda t^{n} e^{-\lambda t} S(t) x d t-n \int_{0}^{\infty} t^{n-1} e^{-\lambda t} S(t) x d t
\end{aligned}
$$

Thus

$$
(\lambda-A) \int_{0}^{\infty} t^{n} e^{-\lambda t} S(t) x d t=n \int_{0}^{\infty} t^{n-1} e^{-\lambda t} S(t) x d t=n!(\lambda-A)^{-n} C x .
$$

Therefore, the result follows.

Theorem 2.3 Let $M, \omega \geq 0$ and let $\{S(t): t \geq 0\}$ be a mild C existence family for A satisfying $\|S(t)\| \leq M e^{\omega t}$ for $t \geq 0$. Suppose A is a closed operator and $\lambda-A$ is injective for $\lambda>\omega$. Then

$$
\lim _{n \rightarrow \infty}\left(I-\frac{t}{n} A\right)^{-n} C x=S(t) x
$$

for all $x \in X$ and the convergence is uniform on bounded t-intervals.
Proof. Let $0 \leq t \leq T$ and $x \in X$. Then

$$
\begin{aligned}
\left(\frac{n}{t}-A\right)^{-n} C x & =\frac{1}{(n-1)!} \int_{0}^{\infty} s^{n-1} e^{-\frac{n}{t} s} S(s) x d s \\
& =\frac{t^{n}}{(n-1)!} \int_{0}^{\infty} u^{n-1} e^{-n u} S(u t) x d u
\end{aligned}
$$

Thus

$$
\left(I-\frac{t}{n} A\right)^{-n} C x=\frac{n^{n}}{(n-1)!} \int_{0}^{\infty}\left(u e^{-u}\right)^{n-1} e^{-u} S(u t) x d u
$$

Let $\varepsilon>0$ be given. Choose $0<a<1<b<\infty$ such that

$$
\|S(u t) x-S(t) x\|<\varepsilon \text { for } a<u<b
$$

Then

$$
\begin{aligned}
\left(I-\frac{t}{n} A\right)^{-n} C x-S(t) x & =\frac{n^{n}}{(n-1)!} \int_{0}^{\infty} u^{n-1} e^{-n u}(S(u t) x-S(t) x) d u \\
& =\frac{n^{n}}{(n-1)!} \int_{0}^{a} u^{n-1} e^{-n u}(S(u t) x-S(t) x) d u \\
& +\frac{n^{n}}{(n-1)!} \int_{a}^{b} u^{n-1} e^{-n u}(S(u t) x-S(t) x) d u \\
& +\frac{n^{n}}{(n-1)!} \int_{b}^{\infty} u^{n-1} e^{-n u}(S(u t) x-S(t) x) d u
\end{aligned}
$$

Since $u e^{-u}$ is increasing for $0<u<1$ and $e^{-u} \leq 1$,

$$
\begin{aligned}
& \frac{n^{n}}{(n-1)!}\left\|\int_{0}^{a} u^{n-1} e^{-n u}(S(u t) x-S(t) x) d u\right\| \\
& \quad \leq \frac{n^{n}}{(n-1)!}\left(a e^{-a}\right)^{n-1} \int_{0}^{a}\|S(u t) x-S(t) x\| d u .
\end{aligned}
$$

Let $b_{n}=\frac{n^{n}}{(n-1)!}\left(a e^{-a}\right)^{n-1} \int_{0}^{a}\|S(u t) x-S(t) x\| d u$. Then $\lim _{n \rightarrow \infty} b_{n+1} / b_{n}=$ $a e^{1-a}<1$. Thus $\lim _{n \rightarrow \infty} b_{n}=0$.

Since $u e^{-u}$ is decreasing for $u>1$ and $e^{-u}<1$,

$$
\begin{aligned}
& \frac{n^{n}}{(n-1)!}\left\|\int_{b}^{\infty} u^{n-1} e^{-n u}(S(u t) x-S(t) x) d u\right\| \\
& \quad \leq \frac{n^{n}}{(n-1)!} b^{n-1} e^{-(n-1) b} \int_{b}^{\infty}\|S(u t) x-S(t) x\| d u .
\end{aligned}
$$

Let $c_{n}=\frac{n^{n}}{(n-1)!} b^{n-1} e^{-(n-1) b} \int_{b}^{\infty}\|S(u t) x-S(t) x\| d u$. Then $\lim _{n \rightarrow \infty} c_{n+1} / c_{n}=$ $b e^{-b}<1$. So $\lim _{n \rightarrow \infty} c_{n}=0$.

Finally, we have

$$
\begin{aligned}
& \frac{n^{n}}{(n-1)!}\left\|\int_{a}^{b} u^{n-1} e^{-n u}(S(u t) x-S(t) x) d u\right\| \\
& \quad \leq \frac{n^{n}}{(n-1)!} \int_{a}^{b} u^{n-1} e^{-n u} \varepsilon d u=\frac{n^{n}}{(n-1)!} \int_{0}^{\infty} u^{n-1} e^{-n u} \varepsilon d u=\varepsilon
\end{aligned}
$$

Therefore we obtain the result.

References

[1] R. deLaubenfels, Existence and Uniqueness families for the Abstract Cauchy Problem, J. London Math. Soc. 44 (1991), 310-338
[2] R. deLaubenfels, Existence families, functional calculi and evolution equations, Lecture Notes in Math., 1570, Berlin, Springer-Verlag 1994
[3] L. Jin and X. Tijun Wellposedness Results for Certain Classes of higher Order Abstract Cauchy Problems connected with Integrated Semigroups, Semigroup Forum 56 (1998), 84 - 103

Young S. Lee
Department of Mathematics
Seoul Women's University
Seoul 139-774, Korea

