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K0-PROXIMITY INDUCED BY UNIFORMITY

Song Ho Han

Abstract. We introduce the k0-proximity space as a generalization
of the Efremovič -proximity space. We try to show that k0-proximity
structure lies between topological structures and uniform structure
in the sense that all topological invariants are k0-proximity invariants
and all k0-proximity invariants are uniform invariants.

1. Introduction

The proximity relation δ was introduced in 1950 by Efremovic̆ and he
showed that the proximity relation δ induces a topology τ(δ) in X and
that the induced topology is completely regular in [1].

He also showed that every completely regular space (X, τ) admits a
compatible proximity δ on X such that τ(δ) = τ . He axiomatically
characterized the proximity relation, A is near B, which is denoted by
AδB, for subsets A and B of any set X. Efremovic̆ axioms of proximity
relation δ are as follows;

E1. AδB implies BδA.
E2. (A ∪B)δC if and only if AδC or BδC.
E3. AδB implies A 6= φ, B 6= φ.
E4. A/δB implies there exists a subset E such that
A/δE and (X − E)/δB.
E5. A ∩B 6= φ implies AδB.
A binary relation δ satisfying axioms E1-E5 on the power set of X is

called a (Efremocic̆) proximity on X. If δ also satisfies the following;
E6. xδy implies x = y then δ is called the separated proximity rela-

tion.

Received February 6, 2003.
2000 Mathematics Subject Classification: 54A20, 54B10, 54B15.
Key words and phrases: metric space, proximity space, product space, quotient

space.



46 Song Ho Han

Definition 1.1. Let δ be a binary relation between a set X and its
power set P (X) such that

K01. xδ{y} implies yδ{x}.
K02. xδ(A ∪B) if and only if xδA or xδB.
K03. x/δφ for all x ∈ X.
K04. x ∈ A implies xδA.
K05. For each subset E ⊂ X, if there is a point x ∈ X such that

either xδA, xδE or xδB, xδ(X − E), then we have yδA and yδB for
some y ∈ X. The binary relation δ is called the K0-proximity on X iff δ
satisfies the axioms K01−K05. The pair (X, δ) is called a K0-proximity
space.

K06. If xδ{y} implies x = y, then δ is called the separated K0-
proximity relation.

Lemma 1.2. In a K0-proximity space (X, δ) let δ1 be a binary relation
on P (X) defined as follows;

If we define Aδ1B if and only if there is a point x ∈ X such that
xδA,xδB, then δ1 is an Efremovic̆ proximity.

It is well known that a family L of subsets of a non-empty set X is
an ultrafilter if and only if the following condition are satisfied:

(i) If A and B belong to L, then A ∩B 6= φ.
(ii) If A ∩ C 6= φ for every C ∈ L, then A ∈ L.
(iii) If (A ∪B) ∈ L, then A ∈ L or B ∈ L.
Now we consider the family of sets in an K0-proximity space satisfying

condition similar to (i), (ii), (iii), with nearness replacing non-empty
intersection and we are led to the following definition:

Definition 1.3. A family σ of subsets of an K0-proximity space
(X, δ) is called a cluster iff the following condition are satisfied;

(1) If A and B belong to σ, then there is a point x ∈ X such that
xδA and xδB.

(2) If for every C ∈ σ, there is a point x ∈ X such that xδA, xδC,
then A ∈ σ.

(3) If (A ∪B) ∈ σ, then A ∈ σ or B ∈ σ.

2. Main Results

We shall study questions concerning the relationship between uniform
structures and K0-proximity structures.
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A uniform structure on X was first defined by Weil in terms of subsets
of X ×X.

If U ⊂ X ×X then U−1 = {(x, y) : (y, x) ∈ U}. Whenever U = U−1

U is called symmetric. For subsets U , V of X × X, U ◦ V = {(x, z) :
there exists a y ∈ X such that (x, y) ∈ V and (y, z) ∈ U}.

Let ∆ = {(x, x) : x ∈ X}. If A ⊂ X, then U [A] = {y : (x, y) ∈ U for
some x ∈ A}

For x ∈ X, U [x] = U [{x}]
Definition 2.1. A uniform structure (or uniformity) U on a set X

is a collection of subsets (called entourages) of X × X satisfying the
following conditions:

(1) Every entourage contains the diagonal ∆.
(2) If U ∈ U and V ∈ U , then U ∩ V ∈ U .
(3) Given U ∈ U , there exists a V ∈ U such that V ◦ V ⊂ U .
(4) If U ∈ U and U ⊂ V ⊂ X ×X, then V ∈ U .
(5) If U ∈ U , then U−1 ∈ U .

The pair (X,U) is called a uniform space.
A subfamily β of a uniformity U is a base for U iff each entourage in

U contains a member of β.
A family ϕ is a subbase for U iff the family of finite intersections of

members of ϕ is a base for U .
It can be shown that for each x ∈ X, {U [x] : U ∈ U} is a neighbour-

hood filter. Thus U generates a topology T = T (U) on X.
As is well known, this topology is always completely regular.
If U satisfies the additional condition
(6)

⋂
U∈U

U = ∆,

Then U is called a Hausdorff or separated uniformity.
In this case, T (U) is Tychonoff. Conversely, every (Tychonoff) com-

pletely regular space (X, T ) has a compactible(separated) uniformity,
i.e. a uniformity U such that T = T (U).

Every uniformity has a base consisting of open(closed) symmetric
members, and it is frequently more convenient to work with such a base
for U rather than with U itself.

Theorem 2.2. Every uniform space (X,U) has an associated K0-
proximity δ = δ(U) defined by that there is a point x ∈ X such that
xδA, xδB iff (A×B) ∩ U 6= φ for every U ∈ U .

Furthermore, T (U) = T (δ). If U is separated, then so is δ(U).
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Proof. All the axioms for a K0-proximity, except perhaps (K0−5) are
easily verified.

To verify (K0− 5), suppose for each x ∈ X, x/δA or x/δB. Then there
exists entourage U and entourage V such that ({x} × A) ∩ U = φ or
({x} ×B) ∩ V = φ.

By definition 2.1-(2), there exists an entourage W such that W =
U ∩ V . Then by definition 2.1-(3) there exists an entourage Z such that
Z ◦ Z ⊂ W .

Let E = Z−1[B]. Then [({x} × A) ∩ Z = φ or ({x} × E) ∩ Z = φ]
and [({x} × B) ∩ Z = φ or ({x} × (X − E)) ∩ Z = φ]

i.e. there exists E ⊂ X such that for each x ∈ X, (x/δA or x/δE) and
(x/δB or x/δX − E).

To show that T (δ) = T (U), we observe that x is in the T (U)- closure
of A iff x ∈ U [A] for every entourage U iff (x × A) ∩ U 6= φ for every
entourage iff xδA, i.e. x is in the T (δ)-closure of A. Finally, suppose
that U is separated. If xδy, then (x, y) ∩ U 6= φ for every entourage U .
This implies (x, y) ∩∆ 6= φ, so that x = y. Thus δ is separated.

δ could equivalently be defined by for some x ∈ X xδA and xδB iff
U [A] ∩ U [B] 6= φ for every U ∈ U .

Theorem 2.3. Let (X,U) be a uniform space and let δ = δ(U). Then
A ¿ B if and only if there is an entourage U such that U [A] ⊂ B.

Proof. A ¿ B iff for each x ∈ X x/δA or x/δ(X − B) iff (A × (X −
B)) ∩ U = φ for some U ∈ U . But the last statement is equivalent to
U [A] ⊂ B.

As is well known, let X ∈ ξ, Y ∈ U , a function f : X → Y is
uniformly continuous iff for each E ∈ U , there is some D ∈ ξ such that
(x, y) ∈ D implies (f(x), f(y)) ∈ E.

If f is one-one, onto and both f and f−1 are uniformly continuous, we
call f a uniform isomorphism and say X and Y are uniformly isomorphic.

Theorem 2.4. If f : (X,U1) → (Y,U2) is uniformly continuous, then
f : (X, δ1) → (Y, δ2) is K0-proximally continuous where δi = δ(Ui) for
i = 1, 2.

Proof. Suppose on the contrary that for some x ∈ X xδ1A and xδ1B,
but f(x)/δ2f(A) or f(x)/δ2f(A) for each x ∈ X.

Then there exists a U2 ∈ U2 such that (f(A)× f(B))∩U2 = φ. Since
f is uniformly continuous, there exists a U1 ∈ U1 such that (x, y) ∈
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U1 implies (f(x), f(y)) ∈ U2. But for some x ∈ X xδ1A and xδ1B,
so that (A × B) ∩ U1 6= φ which implies (f(A) × f(B)) ∩ U2 6= φ, a
contradiction.

The converse of the above theorem is not true. Consider the identity
mapping i : (X,U2) → (X,U1) where X, U1 and U2 are defined as U1

is the usual metric uniformity and U2 is the subspace uniformity on X
induced by the uniformity of its Smirnov compactification correspond-
ing to the usual metric proximity and X is the real line. Then i is a
K0-proximity mapping from (X, δ) onto itself, but it is not uniformly
continuous.
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