K_{0}-PROXIMITY INDUCED BY UNIFORMITY

Song Ho Han

Abstract

We introduce the k_{0}-proximity space as a generalization of the Efremovič -proximity space. We try to show that k_{0}-proximity structure lies between topological structures and uniform structure in the sense that all topological invariants are k_{0}-proximity invariants and all k_{0}-proximity invariants are uniform invariants.

1. Introduction

The proximity relation δ was introduced in 1950 by Efremovič and he showed that the proximity relation δ induces a topology $\tau(\delta)$ in X and that the induced topology is completely regular in [1].

He also showed that every completely regular space (X, τ) admits a compatible proximity δ on X such that $\tau(\delta)=\tau$. He axiomatically characterized the proximity relation, A is near B, which is denoted by $A \delta B$, for subsets A and B of any set X. Efremovič axioms of proximity relation δ are as follows;

E1. $A \delta B$ implies $B \delta A$.
E2. $(A \cup B) \delta C$ if and only if $A \delta C$ or $B \delta C$.
E3. $A \delta B$ implies $A \neq \phi, B \neq \phi$.
E4. $A \not \subset B$ implies there exists a subset E such that
$A \phi E$ and $(X-E) \phi B$.
E5. $A \cap B \neq \phi$ implies $A \delta B$.
A binary relation δ satisfying axioms E1-E5 on the power set of X is called a (Efremocič) proximity on X. If δ also satisfies the following;

E6. $x \delta y$ implies $x=y$ then δ is called the separated proximity relation.

[^0]Definition 1.1. Let δ be a binary relation between a set X and its power set $P(X)$ such that
$K_{0} 1 . x \delta\{y\}$ implies $y \delta\{x\}$.
$K_{0} 2 . x \delta(A \cup B)$ if and only if $x \delta A$ or $x \delta B$.
$K_{0} 3 . x \phi \phi$ for all $x \in X$.
$K_{0} 4 . x \in A$ implies $x \delta A$.
$K_{0} 5$. For each subset $E \subset X$, if there is a point $x \in X$ such that either $x \delta A, x \delta E$ or $x \delta B, x \delta(X-E)$, then we have $y \delta A$ and $y \delta B$ for some $y \in X$. The binary relation δ is called the K_{0}-proximity on X iff δ satisfies the axioms $K_{0} 1-K_{0} 5$. The pair (X, δ) is called a K_{0}-proximity space.
$K_{0} 6$. If $x \delta\{y\}$ implies $x=y$, then δ is called the separated $K_{0}{ }^{-}$ proximity relation.

Lemma 1.2. In a K_{0}-proximity space (X, δ) let δ_{1} be a binary relation on $P(X)$ defined as follows;

If we define $A \delta_{1} B$ if and only if there is a point $x \in X$ such that $x \delta A, x \delta B$, then δ_{1} is an Efremovič proximity.

It is well known that a family \mathcal{L} of subsets of a non-empty set X is an ultrafilter if and only if the following condition are satisfied:
(i) If A and B belong to \mathcal{L}, then $A \cap B \neq \phi$.
(ii) If $A \cap C \neq \phi$ for every $C \in \mathcal{L}$, then $A \in \mathcal{L}$.
(iii) If $(A \cup B) \in \mathcal{L}$, then $A \in \mathcal{L}$ or $B \in \mathcal{L}$.

Now we consider the family of sets in an K_{0}-proximity space satisfying condition similar to (i), (ii), (iii), with nearness replacing non-empty intersection and we are led to the following definition:

Definition 1.3. A family σ of subsets of an K_{0}-proximity space (X, δ) is called a cluster iff the following condition are satisfied;
(1) If A and B belong to σ, then there is a point $x \in X$ such that $x \delta A$ and $x \delta B$.
(2) If for every $C \in \sigma$, there is a point $x \in X$ such that $x \delta A, x \delta C$, then $A \in \sigma$.
(3) If $(A \cup B) \in \sigma$, then $A \in \sigma$ or $B \in \sigma$.

2. Main Results

We shall study questions concerning the relationship between uniform structures and K_{0}-proximity structures.

A uniform structure on X was first defined by Weil in terms of subsets of $X \times X$.

If $U \subset X \times X$ then $U^{-1}=\{(x, y):(y, x) \in U\}$. Whenever $U=U^{-1}$ U is called symmetric. For subsets U, V of $X \times X, U \circ V=\{(x, z):$ there exists a $y \in X$ such that $(x, y) \in V$ and $(y, z) \in U\}$.

Let $\Delta=\{(x, x): x \in X\}$. If $A \subset X$, then $U[A]=\{y:(x, y) \in U$ for some $x \in A\}$

For $x \in X, U[x]=U[\{x\}]$
Definition 2.1. A uniform structure (or uniformity) \mathcal{U} on a set X is a collection of subsets (called entourages) of $X \times X$ satisfying the following conditions:
(1) Every entourage contains the diagonal Δ.
(2) If $U \in \mathcal{U}$ and $V \in \mathcal{U}$, then $U \cap V \in \mathcal{U}$.
(3) Given $U \in \mathcal{U}$, there exists a $V \in \mathcal{U}$ such that $V \circ V \subset U$.
(4) If $U \in \mathcal{U}$ and $U \subset V \subset X \times X$, then $V \in \mathcal{U}$.
(5) If $U \in \mathcal{U}$, then $U^{-1} \in \mathcal{U}$.

The pair (X, \mathcal{U}) is called a uniform space.
A subfamily β of a uniformity \mathcal{U} is a base for \mathcal{U} iff each entourage in \mathcal{U} contains a member of β.

A family φ is a subbase for \mathcal{U} iff the family of finite intersections of members of φ is a base for \mathcal{U}.

It can be shown that for each $x \in X,\{U[x]: U \in \mathcal{U}\}$ is a neighbourhood filter. Thus \mathcal{U} generates a topology $\mathcal{T}=\mathcal{T}(\mathcal{U})$ on X.

As is well known, this topology is always completely regular.
If \mathcal{U} satisfies the additional condition
(6) $\bigcap_{U \in \mathcal{U}} U=\Delta$,

Then \mathcal{U} is called a Hausdorff or separated uniformity.
In this case, $\mathcal{T}(\mathcal{U})$ is Tychonoff. Conversely, every (Tychonoff) completely regular space (X, \mathcal{T}) has a compactible(separated) uniformity, i.e. a uniformity \mathcal{U} such that $\mathcal{T}=\mathcal{T}(\mathcal{U})$.

Every uniformity has a base consisting of open(closed) symmetric members, and it is frequently more convenient to work with such a base for \mathcal{U} rather than with \mathcal{U} itself.

Theorem 2.2. Every uniform space (X, \mathcal{U}) has an associated K_{0} proximity $\delta=\delta(\mathcal{U})$ defined by that there is a point $x \in X$ such that $x \delta A, x \delta B$ iff $(A \times B) \cap U \neq \phi$ for every $U \in \mathcal{U}$.

Furthermore, $\mathcal{T}(\mathcal{U})=\mathcal{T}(\delta)$. If \mathcal{U} is separated, then so is $\delta(\mathcal{U})$.

Proof. All the axioms for a K_{0}-proximity, except perhaps $\left(K_{0}-5\right)$ are easily verified.

To verify $\left(K_{0}-5\right)$, suppose for each $x \in X, x \not \subset A$ or $x \not \subset B$. Then there exists entourage U and entourage V such that $(\{x\} \times A) \cap U=\phi$ or $(\{x\} \times B) \cap V=\phi$.

By definition 2.1-(2), there exists an entourage W such that $W=$ $U \cap V$. Then by definition 2.1-(3) there exists an entourage Z such that $Z \circ Z \subset W$.

Let $E=Z^{-1}[B]$. Then $[(\{x\} \times A) \cap Z=\phi$ or $(\{x\} \times E) \cap Z=\phi]$ and $[(\{x\} \times B) \cap Z=\phi$ or $(\{x\} \times(X-E)) \cap Z=\phi]$
i.e. there exists $E \subset X$ such that for each $x \in X,(x \notin A$ or $x \not \subset E)$ and $(x \phi B$ or $x \phi X-E)$.

To show that $\mathcal{T}(\delta)=\mathcal{T}(\mathcal{U})$, we observe that x is in the $\mathcal{T}(\mathcal{U})$ - closure of A iff $x \in U[A]$ for every entourage U iff $(x \times A) \cap U \neq \phi$ for every entourage iff $x \delta A$, i.e. x is in the $\mathcal{T}(\delta)$-closure of A. Finally, suppose that \mathcal{U} is separated. If $x \delta y$, then $(x, y) \cap U \neq \phi$ for every entourage U. This implies $(x, y) \cap \Delta \neq \phi$, so that $x=y$. Thus δ is separated.
δ could equivalently be defined by for some $x \in X x \delta A$ and $x \delta B$ iff $U[A] \cap U[B] \neq \phi$ for every $U \in \mathcal{U}$.

Theorem 2.3. Let (X, \mathcal{U}) be a uniform space and let $\delta=\delta(\mathcal{U})$. Then $A \ll B$ if and only if there is an entourage U such that $U[A] \subset B$.

Proof. $A \ll B$ iff for each $x \in X x \notin A$ or $x \phi(X-B)$ iff $(A \times(X-$ $B)) \cap U=\phi$ for some $U \in \mathcal{U}$. But the last statement is equivalent to $U[A] \subset B$.

As is well known, let $X \in \xi, Y \in \mathcal{U}$, a function $f: X \rightarrow Y$ is uniformly continuous iff for each $E \in \mathcal{U}$, there is some $D \in \xi$ such that $(x, y) \in D$ implies $(f(x), f(y)) \in E$.

If f is one-one, onto and both f and f^{-1} are uniformly continuous, we call f a uniform isomorphism and say X and Y are uniformly isomorphic.

Theorem 2.4. If $f:\left(X, \mathcal{U}_{1}\right) \rightarrow\left(Y, \mathcal{U}_{2}\right)$ is uniformly continuous, then $f:\left(X, \delta_{1}\right) \rightarrow\left(Y, \delta_{2}\right)$ is K_{0}-proximally continuous where $\delta_{i}=\delta\left(\mathcal{U}_{i}\right)$ for $i=1,2$.

Proof. Suppose on the contrary that for some $x \in X x \delta_{1} A$ and $x \delta_{1} B$, but $f(x) \phi_{2} f(A)$ or $f(x) \phi_{2} f(A)$ for each $x \in X$.

Then there exists a $U_{2} \in \mathcal{U}_{2}$ such that $(f(A) \times f(B)) \cap U_{2}=\phi$. Since f is uniformly continuous, there exists a $U_{1} \in \mathcal{U}_{1}$ such that $(x, y) \in$
U_{1} implies $(f(x), f(y)) \in U_{2}$. But for some $x \in X x \delta_{1} A$ and $x \delta_{1} B$, so that $(A \times B) \cap U_{1} \neq \phi$ which implies $(f(A) \times f(B)) \cap U_{2} \neq \phi$, a contradiction.

The converse of the above theorem is not true. Consider the identity mapping $i:\left(X, \mathcal{U}_{2}\right) \rightarrow\left(X, \mathcal{U}_{1}\right)$ where X, \mathcal{U}_{1} and \mathcal{U}_{2} are defined as \mathcal{U}_{1} is the usual metric uniformity and \mathcal{U}_{2} is the subspace uniformity on X induced by the uniformity of its Smirnov compactification corresponding to the usual metric proximity and X is the real line. Then i is a K_{0}-proximity mapping from (X, δ) onto itself, but it is not uniformly continuous.

References

[1] V. A. Efremovič, Infinitesimal spaces, Dokl. Akad. Nauk SSSR, 76 (1951), 341343.
[2] V. A. Efremovič, The geometry of proximity I, Mat. Sb. 31(73) (1952), 189-200.
[3] Y. M. Smirov, On proximity spaces, Mat. Sb. 31(73) (1952), 543-574.
[4] Y. M. Smirov, On proximity spaces, Mat. Sb. 31(73), 543-574(in Russian); English translation in Am. math. Soc Transl. Ser. 2, 38 (1972), 5-35; MR 14, 1107.
[5] S. Leader, On Products of proximity spaces, Math. Ann, 154 (1964), 185-194.
[6] C. Y. Kim, On the R-Proximities, Yonsei Nochong, Vol 13 (1976), 1-5.
[7] Tadir Huasin, Topology and Maps, Mcmaseter University Hamilton, 1977.
[8] S. H. Han, The cartesian products on extended Jiang subgroup, J, of KangweonKyungki Math. 2 (1994), 73-77.
[9] S. H. Han, Product space and quotient space in K_{0}-proximity spaces, J, of Kangweon-Kyungki Math. 1 (2002), 59-66.

Department of Mathematics
Kangwon National University
Chuncheon 200-701, Korea

[^0]: Received February 6, 2003.
 2000 Mathematics Subject Classification: 54A20, 54B10, 54B15.
 Key words and phrases: metric space, proximity space, product space, quotient space.

