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We consider scheduling jobs on multipurpose machines where jobs can be processed by a subset of the 
machines operated in parallel with the objective of minimizing makespan. We apply LPT(Longest 
Processing Time first) algorithm and prove that its posterior worst-case performance ratio is at most 

log 24m/(1+λ), where λ is the number of machines eligible for processing the job with the latest 
completion time. In general, LPT is shown to always find a schedule with makespan at most log 24m/3 
times optimum.
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1. Introduction

In multipurpose parallel machine systems, each 
machine is flexible to server several different kinds of 
jobs. In the viewpoint of jobs, each job has several 
eligible machines in which it can be possibly 
processed. We are given set of machines M=1,2,
…,m and set of jobs J=1,2,…,n. Each job j has 
processing time or size p j and set of eligible 
machines E j⊆M for j=1,2,…,n, each machine in 

E j
 can process the job j. Under the objective 

function of makespan minimization, the problem can 
be formally formulated as the following integer 
program:

Minimize   C

Subject to

∑
i∈Ej
x ij=1  for  j=1,…,n

∑
j:i∈Ej

p jx ij≤C for  i=1,…,m

x ij∈{0,1}.

The application comes from assembly lines. In 
a factory in a manufacturing company in Korea, 
the capacities of assembly lines are allocated to 
hundreds of different kinds of displays for com- 
puter, TV, an so on. At the beginning of each 
month, decisions are to be made how to assign 
demands from around of the world to the lines. 
The lines are flexible to process several kinds of 
displays. In order to increase the utilization of 
the factory, it is necessary to distribute the loads 
of demands over the lines evenly. Also, in health 
care industry and semiconductor manufacturing, 
the problem can be applied: operating rooms in 
hospital can handle several cases of operations 
(Vairaktarakis and Cai, 2001) and machines in 
wafer test workcenters are multipurpose to process 
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different kinds of jobs (Centeno and Armacost, 
1997).
The multipurpose parallel machine scheduling 
problem is a generalized version of the classical 
parallel machine scheduling problem, where all the 
jobs can be assigned to any machines. Since even 
the classical problem is known to be NP-Com- 
plete(Garey and Johnson, 1979), it seems impo- 
ssible to develop an optimal polynomial time 
algorithm for the multipurpose scheduling problem.
When every machine is eligible for every job, a 
schedule with makespan at most 4/3-1/(3m) 
times optimal is guaranteed by the algorithm 
LPT (Longest Processing Time first). The first 
posterior worst-case analysis for this problem has 
been done by Coman and Sethi (1976). They 
showed the makespan of the LPT schedule is at 
most 1+1/k-1/km times optimal, where k is 
the number of jobs placed on the machine to 
which the job with the latest completion time is 
assigned. In extending the result, Blocher and 
Chand (1991) improved the bound and proved 
that LPT always generates a schedule with 
makespan at most 1+1/k-1/km times π, where 
π is a lower bound to the optimum makespan. 
For the multipurpose machine scheduling, LS(List 
Scheduling) algorithm is proved to have its 
worst-case performance ratio log 22m (Azar et al., 
1995). Recently, Hwang et al. (2003) showed 
that the posterior performance ratio of LS is 

log 2
4
λ
m-

1
λ
, where λ is the number of eligible 

machines for the job with the latest completion 
time. Using the LP-based algorithm of Lenstra et 
al. (1990), we can guarantee a schedule with 
makespan at most twice optimum. In theory, the 
LP(Linear Programming)-based algorithm produces 
much better schedules than those produced by 
algorithms based on simple dispatching rules, for 
instance, LS and LPT. However, in real manufac- 
turing, it is often requested to schedule jobs in 
almost real time. Since LP-based algorithm uses 
binary searches as its major loops with executing 
LP at each iteration, it takes long time to get 
final result.
In this paper, we consider LPT scheduling for 
our problem and prove that its posterior perfor- 

mance ratio is at most log 2
4
1+λ

m, where λ is 

the number of eligible machines for the job with 
the latest completion time. Furthermore, we show 

that the worst-case performance ratio of LPT is 

at most log 2
4
3
m, in general. 

In the next section, we present notations and 
some properties of LPT schedule. Then, in Section 
3, we will prove the posterior performance ratio 
of the algorithm LPT. Finally, concluding remarks 
are given in Section 4.

2.  Notations and Basic Properties of 
LPT Schedule

For machines M=1,2,…,m and jobs J=1,2,…,
n, a schedule is thought of as a partition of the 
n jobs into m disjoint sets, S=<S 1,…,Sm> such 
that j∈Si if machine i belongs to the eligible 
set of job j, that is, i∈E j

. The makespan of a 
schedule S, denoted by z(S), is defined as 

max 1≤i≤m p(Si), where p(S i)= ∑
j∈S i
p j. And if the 

schedule S is produced by an algorithm, we also 
denote its makespan by z A(J,M). Denote the 
optimum makespan for ( J,M) as z *(J,M)=
minz(S), where the minimization is over all the 
schedules S. Then the worst-case performance ratio 
for an algorithm A is defined by 

R(A)= sup{ z
A(J,M)

z *(J,M)
: for  all instances (J,M)}.

Then we consider LPT to attack the multipur- 
pose parallel machine scheduling problem. Algo- 
rithm LPT can be described as follows:

Algorithm LPT
Step 1. Assign all the jobs with |E j|=1.

Step 2. Pick a job j with the largest size among 
the unassigned jobs, and assign it to the machine 
in the set E j

 with the least load, while breaking 
ties by choosing the machine with the least 
index.
We introduce some notations with respect to 
the problem instance (J,M) and the schedule 
generated by LPT in the following.

－ S(S *) : the LPT (optimum) schedule for the 
instance (J,M), respectively.

－ z LPT (z *) : for the ease of notation, z LPT  
and z * will be used instead of z LPT(J,M) 
and z *(J,M) to denote the makespan of the 
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LPT schedule and the optimum makespan, 
respectively.

－ q : the job with the latest completion time 
in the LPT schedule.

－ S': the schedule produced by LPT just right 
before job q is assigned.

－ r : the machine to which job q is assigned, 
i.e., q∈S 'r and hence q∈S r.

－ f i : the finishing time of machine i, i.e., 
the maximum of completion times of jobs 
on machine i, i=1,…,m.

－ λ : the cardinality of the eligible set for the 
job q, i.e., λ= |E q|.

－ u,Δ : u is a positive integer and Δ is a 
value in [0,1), satisfying

z LPT=uz *+Δ

- R k
 : the total load of all the machines which 

should be processed after time kz *.  
Formally, we let

R k= ∑
m

i=1
max {0, f i-kz

* } for k=0,1,…,u.

Let’s consider R k
, the total load to be processed 

after time kz *. Note that R 0= ∑
n

j=1
p j. The follo- 

wing lemma is proved by Azar(1995) and we 
present it without proof here.

Lemma 1: R k-1≥2R k
 for all k=1,…,u. 

Noting the way job a q is assigned by the algo- 
rithm LPT, we can observe that p(S 'i)+p q≥z

LPT 
for all i∈E q

. Thus, p(S 'i)+z
*≥z LPT for all 

i∈E q
, since p q≤z

*. Therefore, we conclude that 

p(S 'i)≥z
LPT-z * for all i∈E q

  (1)

3.  The Posterior Performance Ratio of 
Algorithm LPT

Now we present the following theorem, which is 
an extended result of Hwang et al.(2002).

Theorem 1: z
LPT

z *
≤log 2

4
1+λ

m.

Before proving Theorem 1, we consider the 

special case of the theorem when m=λ.
First of all, note that 

∑
m

i=1
p(S'i)+p q≤mz

*.  (2)

Due to the fact that λ=m, we also have

p(S 'i)+p q≥z
LPT, for all i=1,…,m. (3)

Lemma 2: If λ=m, then we have z
LPT

z *
≤

3
2
-

1
2m
 and thus z

LPT

z *
≤log 2

4
1+λ

m.

Proof. Now, we assume that the lemma is 

false, i.e., z LPT> ( 32 -
1
2m )z

*. Then, from (3), it 

holds that

∑
m

i=1
p(S i

')+mp q≥mz
LPT>m ( 32 -

1
2m )z

*. (4)

Then, this together with equation (2) implies 

p q>
1
2
z
*.

With respect to the incomplete schedule S ', 
we define M ' to be a set of machines such that 
i∈M ' if every job in S 'i is designated job(whose 
eligible set has only one element). Then, for each 
i∈M-M ', S 'i has at least one job having more 
than one eligible machine. From the rule of LPT 
we can easily see that if a job is assigned before 
job q and it has more than one eligible machine, 
then the job has size greater than or equal to 
that of q. Hence, for each S 'i, i∈M-M', there 
exists at least one job whose length is greater 
than or equal to that of job q.
In optimal schedule S *, a non-designated job j 
with p j≥p q cannot be assigned to the machines 
in M', since p(S 'i)+p j≥p q+p(S

'
i)>z

* and S 'i⊆S
*
i
 

for all i∈S.
If we let k=|S|, we know that there are at 
least m-k+1 non-designated jobs (including job 

q) with size strictly greater than 1
2
z * which 

should be assigned to the m-k machines in 
M-M'. If so, we can see that it is impossible to 
get a schedule whose makespan is within the 
optimum makespan z *. This is a contradiction. 

Thus, z
LPT

z *
≤
3
2
-
1
2m
. Next, it is also true that 

if λ=m then z
LPT

z *
≤log 2

4
1+λ

m, since 3
2
-
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1
2m
≤log 2

4m
1+m

.

Suppose that u≥2. Then S is not an optimal 
schedule and this implies

λ≥2. (5)

For the machine r to which the job q is 
assigned, we also have 

p(S 'q)≥uz
*+Δ. (6)

By equation (1), for all i∈E q, 

p(S 'i)≥z
LPT-z *=(uz *+Δ)-z *=(u-1)z *+Δ 

for all i∈E q. (7)

From the fact that λ= |E q| with equation (6) 
and equation (7), we obtain that

R u-2= ∑
i∈E q

(p(S i )-(u-2)z
*)

+ ∑
i∈M-E q

max 0, p(S i)-(u-2)z
*

≥(1+λ)z *+λΔ+ ∑
i∈M-E q

max 0, p(S i)-(u-2)z
*

Hence, if u≥2, it holds

R u-2≥(1+λ)z
*+λΔ

+ ∑
i∈M-E q

max 0, p(S i)-(u-2)z
* . (8)

Now, we establish the following lemma to prove 
Theorem 1.

Lemma 3: If u≥2, then R u-2≥(1+λ)(Δ+z
*).

Proof. We assume that the lemma is false, i.e.,

R u-2<(1+λ)(Δ+z
*) (9)

Adding this to equation (8), we obtain

(1+ λ)(Δ+z *)>(1+λ)z *

+λΔ+ ∑
i∈M-E q

max 0, p(S 'i)-(u-2)z
*

This implies

Δ> 0 (10)

and                                        

p(S 'i)<(u-2)z
*+Δ, for all i∈M-E q

. (11)

For each i∈E q
, we use j i to denote the last 

job assigned to S 'i. Then, from equation (7) and 
equation (11) with the fact that each p j i≤z

*, we 

observe that each job in j i:i∈E q∪ q cannot be 
assigned to the machines in the set M-E q

. 
Moreover, note that p(S 'i)≥(u-1)z

*+Δ> z * since 

u≥2 and Δ> 0. Thus the jobs j i have their 
completion time greater than z *. This means 
that they are not designated job, i.e., have at 
least two eligible machines. Hence, they are 
assigned by Step 2 of the LPT algorithm and 
hence their sizes are at least that of job q.

Now, we will obtain lower bound on the size 
of job q. First, note that

R u-1= ∑
i∈E q

(p(S i )-(u-1)z
*)

+ ∑
i∈M-E q

max 0, p(S i)-(u-1)

≥ ∑
i∈E q

(p(S i)-(u-1)z
*).

Hence,

R u-1 ≥ ∑
i∈E q

(p(S i)-(u-1)z
*)

= p(S r)-(u-1)z
*

+ ∑
i∈E q- r

(p(S i)-(u-1)z
*)

= p(S 'r)+p q-(u-1)z
*

+ ∑
i∈E q- r

(p(S i)-(u-1)z
*)

≥p(S 'r)+p q-(u-1)z
*

∑
i∈E q- r

(p(S i)-(u-1)z
*)

= ∑
i∈E q

(p(S 'i)-(u-1)z
*)+p q

≥λ(p(S r')-(u-1)z
*)+p q,

since p(S 'r)≤p(S
'
i) for all i∈E q

. That is, 

R u-1≥λ(p(S
'
r )-(u-1)z

*)+p q (12)

Then by Lemma 1 and equation (12), we have

R u-2≥2λ(p(S r')-(u-1)z
*)+2p q. (13)

Thus from equation (9) and (13), it is true that 
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(1+λ)(Δ+z *) > 2λ(p(S r')-(u-1)z
*)+2p q

=2λ(p(S 'r)+p q-(u-1)z
*)-2(λ-1)p q

=2λ(uz *+Δ-(u-1)z *)-2(λ-1)p q

=2λ(Δ+z *)-2(λ-1)p q.

Therefore,

(1+λ)(Δ+z *)>2λ(Δ+z *)-2(λ-1)p q.

Due to equation (5), this implies p q >
1
2
(Δ+ z *)>

1
2
z *. Hence, p j i≥p q>

1
2
z *, for all i∈E q.

 Thus 

there are 1+λ jobs (jobs in j i:i∈E q∪q) with 

size greater than 1
2
z
*, which are only eligible 

to be processed by some of the machines in E q. 
How- ever, it is impossible to schedule 1+λ jobs 

with size greater than 1
2
z
* on λ machines 

within time z *. This is a contradiction and the 
lemma follows. 
We are now prepared to prove the last theorem 
concerning the worst-case bound of the LPT 
schedule.

Proof of Theorem 1:
If λ=m, the theorem holds by Lemma 2. If 
u< 2 and λ<m, the theorem also holds, since

z LPT

z *
< 2

≤ log 2
4(1+λ)
1+λ

≤ log 2
4
1+λ

m.

Now, we prove the theorem for the case of 
m>λ and u≥2. When u≥2, R u-2≥(1+λ)

(Δ+ z *) by Lemma 3. Also, note that 
R 0≥2

u-2R u-2 by Lemma 1. Hence, we have

mz *≥2 u-2(1+λ)(Δ+z *).

If we let δ=Δ/z *, 0<δ< 1, we obtain u≤log

2
4m

( 1+λ)(1+δ)
. Therefore we see that 

z LPT

z *
< u+δ

≤ log 2
4m

( 1+λ)(1+δ)
+δ

≤ log 2
4
1+λ

m+δ- log 2(1+δ)

≤ log 2
4m
1+λ

,

since δ- log 2(1+δ)≤0 for all 0<δ< 1. Hence, 
the theorem is true 

z LPT= log 2
4m
1+λ

. 

Therefore, we have z
LPT

z *
= log 2

4m
1+λ

.

    
If the LPT schedule is not optimal, the job q has 
at least two eligible machines. Hence, the follo- 
wing corollary follows directly from Theorem 1.

Corollary 4:  z
LPT

z *
= log 2

4m
3
.

6.  Conclusions

We considered LPT scheduling for multipurpose 
parallel machines and proved its posterior perfor- 
mance ratio is at most log 24m/(1+λ), where λ 
is the number of machines eligible for processing 
the job with the latest completion time. In 
general, its performance ratio is shown to be at 
most log 2 4m/3.
This algorithm can be applied to an environ- 
ment of almost realtime manufacturing. However, 
it still needs to develop approximation algorithms 
of better performance ratios with fast running 
times.
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