Effects of pH and the Existence of CO2 Gas on the Silica Surface Characteristics at Silica/Pb(II) Solution Interface

CO2 가스의 존재 여부와 용액의 pH가 Silica/Pb(II) 용액 계면에서 Silica 표면의 특성에 미치는 영향

  • Lee, Sang-Eun (Department of Plant Resources Science, Hankyong National University)
  • 이상은 (한경대학교 식물자원과학과)
  • Received : 2003.08.18
  • Accepted : 2003.10.07
  • Published : 2003.10.30

Abstract

Effects of the existence of $CO_2$ gas and pH on the silica surface characteristics at silica/Pb(II) and sodium dodecyl sulfonate (SDS, $C_{12}H_{25}SO_3Na$) solution interface were studied. The hydrophobic characteristics of silica surface was delineated by contact angle measurement and surface force measurement using atomic force microscopy (AFM). In $CO_2$ free condition provided by purging $N_2$ gas, the contact angle of fused silica surface in $10^{-4}M$ Pb(II) and SDS solution increased greatly up to $90^{\circ}$ compared with $40^{\circ}$ in atmospheric condition. It was due to the precipitation of $PbCO_3$ in atmospheric condition. In $CO_2$ free condition the change of contact angle and adhesion force ($F_{ad}$) in AFM, affected by pH change, was similar to the distribution of $PbOH^+$ ion in speciation diagram corresponding to $10^{-4}M$ total Pb(II). Therefore, it was convinced that the $PbOH^+$ ion among Pb(II) species would be the main adsorbing type on silica surface. Both of contact angle measurement and surface force measurement using AFM showed that the Pb only treatment made the silica surface hydrophobic. However, it could not be explained theoretically by current knowledge, and required further study in atomic level to solve the problem.

$CO_2$ 가스 존재여부와 pH가 Pb(II)와 sodium dodecyl sulfonate(SDS, $C_{12}H_{25}SO_3Na$) 흡착에 따른 silca 표면의 특성 변화에 미치는 영향을 contact angle 과 AFM을 이용한 힘 측정을 통하여 살펴보았다. 대기와 접촉하여 $CO_2$가 용해되는 조건에서 Pb와 SDS가 $10^{-4}M$ 씩 들어 있는 혼합용액을 처리하였을 때, fused silica 표면의 contact angle은 $PbCO_3$의 침전 때문에 최대 $46^{\circ}$로 낮았다. 반면에 $N_2$ 개스를 불어넣는 $CO_2$ 부재조건에서는 $PbCO_3$의 침전이 없었기 때문에 contact angle이 최대 $90^{\circ}$로 크게 증가되었다. $CO_2$ 부재조건에서 pH에 따른 contact angle과 AFM에서 측정한 점착력($F_{ad}$) 변화 양상은 $PbOH^+$ 화학종 분포와 유사하였으므로, Pb(II)의 silica 표면 흡착형태는 $PbOH^+$ 로 판단되었다. 한편 contact angle 과 AFM 측정결과 모두 Pb 단독처리에서 소수성을 발현하였다. 이 결과는 현재까지의 알려진 이론으로 설명할 수 없었으며 이를 위하여 원자수준에서의 심도 깊은 연구가 필요하다고 판단되었다.

Keywords

References

  1. Adamson, A. W., and A. P. Gast. 1998. Physical chemistry of surfaces. 6th ed. John Wiley and Sons, New York, USA
  2. Arvidson R S., I. E. Ertan,1. E. Amonette, and A. Luttge. 2003. Variation in calcite dissolution rates: A fundamental problem? Geochim. Cosmochim. Acta 67:1623-1634 https://doi.org/10.1016/S0016-7037(02)01177-8
  3. Davis,J. A., and J. O. Leckie. 1978.Surface ionization and complexation at the oxide/water interface. II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions. J.Colloid Interf. Sci. 67:90-107 https://doi.org/10.1016/0021-9797(78)90217-5
  4. Deryagin B., and L. Landau. 1941.Theory of the stability of stronglychargedlyophobicsols and of the adhesionof strongly charged particles in solutions of electrolytes. Acta Physicochimica URSS. 14:633-662
  5. Fuerstenau D. W. 1970. Interfacial processes in mineral/water systems. Pure Appl. Chem. 24:135-164 https://doi.org/10.1351/pac197024010135
  6. Fuerstenau, M. C. and B. R. Palmer. 1976. Anion floation of oxides and silicates. p. 148-196. In M. C. Fuerstenau (ed.) Flotation - A. M. Gaudin memorial volume. AIMMPE, New York, USA
  7. Herrera-Urbina R, and D. W. Fuerstenau. 1995.The effect of Pb(II) species, pH and dissolvedcarbonateon the zeta potentialat the quartz/aqueous solution interface. Colloid. Surface. A. 98:25-33 https://doi.org/10.1016/0927-7757(95)03110-Y
  8. Israelachvili J., and R. M. Pashley, 1982.The hydrophobic interaction is long range, decaying exponentially with distance. Nature 300:341-342 https://doi.org/10.1038/300341a0
  9. James R. O., P. J. Stiglich, and T. W. Healy. 1975. Analysis of models of adsorption of metal ions at oxide/waterinterfaces. Farady Discuss. 59:142-156 https://doi.org/10.1039/dc9755900142
  10. James R. O., and T. W. Healy. 1972. Adsorption of hydrolyzable metal ions at the oxide-water interface. J. Colloid Interf. Sci. 40:65-81 https://doi.org/10.1016/0021-9797(72)90174-9
  11. Jang, H. M., and D. W. Fuerstenau. 1986. The specific adsorption of alkaline-earth cations at the rutile/water interface. Colloids and Surface.21:235-257 https://doi.org/10.1016/0166-6622(86)80094-4
  12. Kallay N., D. Kovacevic, and A. Cop. 2000. Interpretation of interfacial equilibria on the basis of adsorption and electrokinetic data. p. 249-271. In N. Kallay (ed.) nterfacial dynamics. Surfactant Science Series (2000) Vol. 88. Marcel Dekker Inc.,New York, USA
  13. Kosmulski, M., R. Sprycha, and J. Szczypa. 2000. Surface complexation model for solid-liquid interfaces. p. 163-223. In N. Kallay (ed.). Interfacial dynamics. Surfactant Science Series (2000) Vol. 88. Marcel Dekker Inc., New York, USA
  14. Liu C., and P. M. Huang. 1999. Atomic force microscopy and surface characteristics of iron oxides formed in citrate solutions. Soil Sci. Soc. Am. J. 63:65-72 https://doi.org/10.2136/sssaj1999.03615995006300010011x
  15. McBride, M. B. 1994. Environmental chemistry of soils. Oxford University Press, NewYork.
  16. Rabinovich, Y. I., and R. H. Yoon. 1994. Use of atomic force microscope for the measurements of hydrophobic forces. Colloids and Surface. A. 93:263-273 https://doi.org/10.1016/0927-7757(94)02985-7
  17. Schulthess, C. P., and C. P. Huang. 1990. Adsorption of heavy metals by silicon and aluminum oxide surfaces. Soil Sci. Soc. Am. J. 54:679-688 https://doi.org/10.2136/sssaj1990.03615995005400030008x
  18. Stack A. G., Steven R. H., and C. M. Eggleston. 2001. Point of zero charge of a corundum-water interface probed with optical second harmonic generation (SHG) and atomic force microscopy (AFM). Geochim. Cosmochim. Acta. 65:3055-3063 https://doi.org/10.1016/S0016-7037(01)00649-4
  19. Van Riemsdijk, W. H., J. C. M. de Wit, L. K. Koopal, and G. H. Bolt. 1987. Metal ion adsorption on heterogeneous surfaces: adsorption models. J. Colloid Interf. Sci. 116:511-522 https://doi.org/10.1016/0021-9797(87)90147-0
  20. Verwey, E. J. W., and J. Th. G. Overbeek. 1948. Theory of the stability of lyophobic colloids. Elsevier, Amsterdam, Netherlands