Effect of Mg-Sulfate and Mg-Hydroxide on Growth of Chinese Cabbage

배추에 대한 황산고토와 수산화고토의 비효 비교

  • 이상조 (영남대학교 생물자원학부) ;
  • 이승호 (영남대학교 생물자원학부) ;
  • 신현진 (영남대학교 생물자원학부) ;
  • 조현종 (대구대학교 생명환경학부) ;
  • 김복진 (영남대학교 생물자원학부) ;
  • 정종배 (대구대학교 생명환경학부)
  • Received : 2003.07.01
  • Accepted : 2003.07.21
  • Published : 2003.08.30

Abstract

Magnesium hydroxide, which recently registered as a Mg fertilizer, is greatly different from magnesium sulfate in its solubility and effect on soil pH. In this study, the effects of magnesium hydroxide and magnesium sulfate on growth of chinese cabbage were compared at the application rate of $300kg\;MgO\;ha^{-1}$ in a Gyeongsan clay loam soil. Although magnesium hydroxide was effective in increasing number of leaf and fresh weight, overall effects of magnesium hydroxide and magnesium sulfate on the growth of chinese cabbage were not significantly different ($p{\leq}0.05$). Comparing the two magnesium fertilizer treatments, magnesium content of chinese cabbage was relatively higher in the magnesium sulfate treatment in the early stage of growth, but it was higher in the magnesium hydroxide treatment at harvest. Contents of Ca, P, and K in chinese cabbage were relatively higher in the magnesium hydroxide treatment than those in magnesium sulfate treatment. But, the differences in nutrient uptakes by chinese cabbage between the treatments were not significant ($p{\leq}0.05$). Therefore, magnesium hydroxide is expected to be used with nearly the same effects on crops as magnesium sulfate at the same application rate of Mg. Soil pH in the treatment of magnesium sulfate was lower than that of control treatment, but magnesium hydroxide could increase pH. Magnesium hydroxide can be used preferentially in acid and/or sandy soils, where magnesium sulfate can induce further soil acidification and leaching loss of Mg is often a severe problem.

최근 고토비료로 등록된 수산화고토는 황산고토와 비교할 때 용해도가 매우 낮으며 토양반응에 미치는 영향 측면에서도 다른 특성을 가지고 있다. 본 연구에서는 이들 두 가지 고토비료를 표준시비량인 $300kg\;MgO\;ha^{-1}$ 수준으로 처리한 경산통 토양에서 배추 재배하여 그 비효를 비교하였다. 수산화고토는 배추의 엽수와 생체중을 증가시키는 효과를 보였으나, 생육 전반에 미치는 효과에 있어서는 황산고토와 비교할 때 통계적으로 유의성 있는 차이를 보이지는 않았다 ($p{\leq}0.05$). 배추의 마그네슘 함량은 생육초기에는 황산고토 처리구에서 높았으나 수확기에 조사된 결과에서는 수산화고토 처리구에서 높았으며, Ca, P, 및 K 함량은 황산고토에 비하여 수산화고토 처리구에서 높았다. 그러나 비종간의 이들 양분 흡수의 차이는 통계적으로 유의하지 못하였다. 황산고토를 처리한 토양의 pH는 대조구에 비하여 낮아졌으나, 수산화고토 처리구에서는 pH가 높아졌고 유효인산 함량 또한 증가하였다. 침출성 Ca 함량은 수산화고토 처리구에 비하여 황산고토 처리구에서 낮게 나타났다. 토양반응과 양분의 유효도에 미치는 영향의 차이는 비종간의 화학적 특성 차이에 기인하는 것으로 판단된다. 따라서 동일한 수준으로 시용할 때, 수산화고토와 황산고토의 작물에 대한 비효는 대등한 것으로 결론지을 수 있으며, 산성토양이나 용탈이 쉽게 일어날 수 있는 사질 토양에서는 산성비료이며 수용성인 황산고토보다 수산화고토의 시용이 유리할 것으로 판단된다.

Keywords

References

  1. Bower, C.A., G. Ogata, and J.M. Tucker. 1968. Sodium hazard of irrigation waters as influenced by leaching fraction and by precipitation or solution of calcium carbonate. Soil Sci. 106:29-34 https://doi.org/10.1097/00010694-196807000-00005
  2. Brenaner, J.M., and C.S. Mulvaney. 1982. Nitrogen-Total. p. 595-624. In A.L. Page et al. (ed.) Methods of soil analysis, Part 2. Chemical and microbiological properties (2nd ed.). Soil Science Society of America, Madison, Wisconsin, USA
  3. Cammarano, P., A. Felsani, M. Gentile, C. Gualerzi, C. Romeo, and G. Wolf. 1972. Formation of active hybrid 80-S particles from subunits of pea seedlings and mammalian liver ribosomes. Biochim. Biophys. Acta 281:625-642
  4. Jensen, H.E., and K.L. Bobcock. 1973. Cation exchange equilibria on a Yolo loam. Hilgardia 41:475-487
  5. Lee, S.J., S.H. Lee, H.J. Shin, H.J. Cho, B.J. Kim, and J.B. Chung. 2003. Comparison of the effects of Mg-sulfate and Mg-hydroxide on soil pH, EC and exchangeable cation distribution. Korean J. Soil Sci. Pert. 36:105-112
  6. Longnecker, D., and F.G. Merkle. 1952. Influence of placement of lime compounds on root development and soil characteristics. Soil Sci. 73:71-74 https://doi.org/10.1097/00010694-195201000-00008
  7. Marschner, H. 1986. Mineral nutrition of higher plantsAcademic Press. London, UK
  8. McSwain, B.D., H.Y. Tsujimoto, and D.I. Arnon. 1982. Effects of magnesium and chloride ions on light-induced electron transport in membrane fragments from a blue-green alga. Biochim. Biophys. Acta 423:313-322
  9. Nelson, D.W., and L.E. Sommers. (1982) Total carbon, organic carbon, and organic matter, p. 539-579. In A.L. Page et al. (ed.) Methods of soil analysis, Part 2. Chemical and microbiological properties (2nd ed.). Soil Science Society of America, Madison, Wisconsin, USA
  10. Olsen, S.R., and L.E. Sommers. 1982. Phosphorus, p. 403-430. In A.L. Page et al. (ed.) Methods of soil analysis, Part2. Chemical and microbiological properties (2nd ed.). Soil Science Society of America, Madison, Wisconsin, USA
  11. Pratt, P.F., and F.L. Bair. 1969. Sodium hazard of bicarbonate irrigation water. Soil Sci. Soc. Amer. Proc. 33:880-883 https://doi.org/10.2136/sssaj1969.03615995003300060024x
  12. Thomas, G.W. 1982. Exchangeable cations, p. 73-126. In A.L. Page et al. (ed.) Methods of soil analysis, Part 2 Chemical and microbiological properties (2nd ed.). Soil Science Society of America, Madison, Wisconsin. USA
  13. Tisdale, S.L.. W.L. Nelson, and J.D. Beaton. 1985. Soil fertility and fertilizers. Macmillan Publishing Co., New York-USA
  14. Van Lierop, W. 1990. Soil pH and lime requirement determination, p. 73-126. In R.L. Westerman et al. (ed.) Soil testing and plant analysis. Soil Science Suciety of America, Madison, Wisconsin, USA