DOI QR코드

DOI QR Code

Analysis of Nanosecond Explosive Vaporization Process by Photothermal/Photoacoustic Methods

광열/광음 기법에 의한 나노초 폭발적 기화 과정 분석

  • Published : 2003.06.01

Abstract

This paper introduces optical methods for in-situ measurement of surface temperature and pressure transient in thermal processes having nanosecond time scales. In the temperature measurement, a p -Si thin film whose refractive index is calibrated as a function of temperature is embedded beneath the sample surface and the photothermal reflectance is monitored for estimating the surface temperature. The pressure transients are measured using the photoacoustic optical deflection method. The experimental technique is used to analyze the nanosecond laser induced vaporization process that is central to numerous engineering and bio-medical applications. Based on the experimental results, discussions are made on the experimental technique and the physical mechanisms of laser-driven explosive vaporization phenomena.

Keywords

References

  1. Tam, A. C., Leung, W. P., Zapka, W, and Ziemlich, W, 1992, 'Laser-Cleaning Techniques for Removal of Surface Particulates,' Journal of Applied Physics, Vol. 71, pp. 3515-3523 https://doi.org/10.1063/1.350906
  2. Park, H. K., Grigoropoulos, C. P., Leung, W. P., and Tam, A. C., 1994, 'A Practical Excimer Laser-Based Cleaning Tool for Removal of Surface Contaminants,' IEEE Transactions of Components, Packaging, and Manufacturing Technology - Part A, Vol. 17, pp. 631-643 https://doi.org/10.1109/95.335050
  3. She, M., Kim, D., and Grigoropoulos, C. P., 1999, 'Liquid-Assisted Pulsed Laser Cleaning Using Near-Infrared and Ultraviolet Radiation,' Journal of Applied Physics, Vol. 86, No. 11, pp. 6519-6524 https://doi.org/10.1063/1.371617
  4. Kim, D. and Lee, J. 2002, 'On the Physical Mechanisms of Liquid-Assisted Laser Cleaning,' to appear in Journal of Applied Physics https://doi.org/10.1063/1.1527207
  5. Vogel, A., Schweiger, P., Frieser, A., Asiyo, M. N., and Birngber, R., 1990, 'Intraocular Nd:YAG Laser Surgery: Light-Tissue Interaction, Damage Range, and Reduction of Collateral Effects, IEEE Journal of Quantum Electronics, Vol. 26, pp. 2240-2260 https://doi.org/10.1109/3.64361
  6. Teng, P., Nishioka, N. S., Anderson, R. R., and Deutsch, T. F., 1987, 'Optical Studies of Pulsed-Laser Fragmentation of Biliary Calculi,' Applied Physics B, Vol. 42, pp. 73-78 https://doi.org/10.1007/BF00694813
  7. Kim, D., Park, H. K., and Grigoropoulos, 2001, C. P., 'Interferometric Probing of Rapid Vaporization at a Solid-Liquid Interface Induced by Pulsed Laser Irradiation,' Int. J. Heat Mass Transfer, Vol. 44, No. 20, pp. 3843-3853 https://doi.org/10.1016/S0017-9310(01)00031-X
  8. Kim Dongsik, Park Hee K. and Grigoropoulos, C. P., 2001, 'Probing of Microscale Phase-Change Phenomena Based on Michelson Interforometry.' Trans. of the KSME, B, Vol. 25, No. 8, pp. 1140-1147
  9. Park, H. K., Zhang, X., Grigoropoulos, C. P., Poon, C. C., and Tam A. C., 1995, 'Transient Temperature development During the Vaporization of Liquids on a Pulsed-Laser Heated Solid Surface,' ASME Transactions of Journal of Heat Transfer, Vol. 118, pp. 702-708
  10. Dyer, P. E. and Sidhu, J., 1985, 'Excimer Laser Ablation and Thermal Coupling Efficiency to Polymer Films,' Journal of Applied Physics, Vol. 57, pp. 1420-1422 https://doi.org/10.1063/1.334503
  11. Gorodestsky, G., Kazyaka, T. G., Melcher, R. L., and Srinivasan,R., 1986, Applied Physics Letters, Vol. 46, pp. 828-830 https://doi.org/10.1063/1.95898
  12. Brunco, D. P., Thompson, M. O., Otis, C. E., and Goodwin, P. M., 1992, 'Temperature Measurement of Polyimide during KrF Excimer Laser Ablation,' Journal of Applied Physics, Vol. 72, pp. 4344-4350 https://doi.org/10.1063/1.352198
  13. Jellison, G. E., Jr., Lowndes, D. H., Mashburn, D. N., and Wood, R. F., 1986, 'Time-Resolved Reflectivity Measurements of Silicon and Germanium Using a Pulsed Excimer KrF Laser Heating Beam,' Physical Review B., Vol. 34, No. 4, pp. 2407-2415 https://doi.org/10.1103/PhysRevB.34.2407
  14. Jellison, G. E., Jr., and Burke, H. H., 1986, 'The Temperature Dependence of the Refractive Index of Silicon at Elevated Temperatures at Several Laser Wavelengths,' Journal of Applied Physics, Vol. 60, No. 2, pp. 841-843 https://doi.org/10.1063/1.337386
  15. Schoeffmann, H., Schmidt-Kloiber, H., and Reichel, E., 1987, 'Time-Resolved Investigations of Laser-Induced Shock Waves in Water by Use of Polyvinylidenefluoride Hydrophones,' Journal of Applied Physics, Vol. 63, pp. 46-51 https://doi.org/10.1063/1.340461
  16. Leung, W. P. and Tam, A. C., 1992, 'Noncontact Monitoring of Laser Ablation Using a Miniature Piezoelectric Probe to Detect Photoacoustic Pulses in Air,' Applied Physics Letters, Vol. 60, pp. 23-25 https://doi.org/10.1063/1.107354
  17. Vogel, A., Lauterborn, W., and Timm, R., 1989, 'Optical and Acoustic Investigations of the Dynamics of Laser-Produced Cavitation Bubbles Near a Solid Boundary,' Journal of Fluid Mechanics, Vol. 206, pp. 299-338 https://doi.org/10.1017/S0022112089002314
  18. Ward, B., and Emmony, D. C., 1991 b, 'Interferometric Studies of the Pressures Developed in a Liquid During Infrared-Induced Cavitation-Bubble Oscillation,' Infrared Physics, Vol. 32, pp. 489-515 https://doi.org/10.1016/0020-0891(91)90138-6
  19. Harith, M. A., Palleschi, V., Salvetti, A., Singh, D. P., Vaselli, M., Dreiden, G. V., Ostrovsky, Y. I., and Semenova, I. V., 1989, 'Dynamics of Laser-Driven Shock Waves in Water,' Journal of Applied Physics, Vol. 66, pp. 5194-5197 https://doi.org/10.1063/1.343755
  20. Doukas, A. G., Zweig, A. D., Frisoli, J. K., Birngruber, R., and Deutsch, T. F., 1991, 'Non-Invasive Determination of Shock Wave Pressure Generated by Optical Breakdown,' Applied. Physics B, Vol. 53, pp. 237-245 https://doi.org/10.1007/BF00357143
  21. Do, N., Klees, L., Tam, A. C., Leung, P. T., and Leung, W. P., 1993, 'Photodetlection Probing of the Explosion of a Liquid Film in Contact with a Solid Heated by Pulsed Excimer Laser Irradiation,' Journal of Applied Physics, Vol. 74, 1534-1538 https://doi.org/10.1063/1.354853
  22. Born, M., and Wolf, E., 1980, 'Principles of Optics,' Pergamon Press, Oxford
  23. Jacobsson, R., 1965, 'Ligh Reflection from Films of Continuously Varying Refractive Index,' in Progress in Optics, Vol. 5, E. Wolf, Ed., North-Holland, Amsterdam, pp. 247-286
  24. Sigrist, M. W., 1986, ' Laser Generation of Acoustic Waves in Liquids and Gases,' Journal of Applied Physics, Vol. 60, pp. R83-R121 https://doi.org/10.1063/1.337089
  25. Tam, A. C., 1986, 'Applications of Photoacoustic Sensing Techniques,' Review of Modern Physics, Vol. 58, pp. 381-431 https://doi.org/10.1103/RevModPhys.58.381
  26. Schiebener, P., Straub, J., Levelt Sengers, J. M. H., and Gallagher, J. S., 1990, 'Refractive Index of Water and Steam as Function of Wavelength, Temperature, and Density,' Journal of Physical and Chemical Reference Data, Vol. 19, pp. 677-717 https://doi.org/10.1063/1.555859
  27. Terzic, M., and Sigrist, M. W., 1984, 'Diffraction Characteristics of Laser-Induced Acoustic Waves in Liquids,' Journal of Applied Physics, Vol. 56, pp. 93-95 https://doi.org/10.1063/1.333734
  28. Edmonds, P. D., and Dunn, F., 1981, Methods of Experimental Physics - Ultrasonics, edited by P. D. Edmonds, Academic Press, New York, Vol. 19, p. 7
  29. Hutchins, D. A., Dewhurst, R. J., and Palmer, S. B., 1981, 'Laser Generated Ultrasound at Modified Metal Surfaces,' Ultrasonics, Vol. 19, pp. 103-108 https://doi.org/10.1016/0041-624X(81)90078-0
  30. Kim Dongsik and Lee Ho, 2001, 'Enhancement of Pulsed-Laser Ablation by Phase Explosion of Liquid,' Trans. Of the KSME B, Vol. 25, No. 11, pp. 1483-1491