Enhanced Field Emission and Luminescent Properties of Straightened Carbon Nanotubes to be Applied in Field Emission Display

  • Lee, Hyeong-Rag (Department of Physics, Nanophyscis and Technology Laboratory (NPTL), Kyungpook National University) ;
  • Kim, Do-Hyung (Department of Physics, Nanophyscis and Technology Laboratory (NPTL), Kyungpook National University) ;
  • Kim, Chang-Duk (Department of Physics, Nanophyscis and Technology Laboratory (NPTL), Kyungpook National University) ;
  • Jang, Hoon-Sik (Department of Physics, Nanophyscis and Technology Laboratory (NPTL), Kyungpook National University)
  • Published : 2003.06.24

Abstract

The field emission and luminescent properties of carbon nanotubes (CNTs) that were straightened by argon ion irradiation were investigated. Argon ion irradiation permanently straightened both as-grown and screen-printed CNTs (SP-CNTs) in the presence of a strong electric field. The straightening process enhanced the emission properties of as-grown CNT films by showing a decrease in turn-on field, an increase in total emission current, and a stable emission. Recurring problems associated with SP-CNTs, such as bent or/and buried CNTs and the degradation in binder-residue-induced emission, were improved by the permanent straightening of CNTs and protruding CNTs from binders by the irradiation treatment, in addition to its surface cleaning effect. Furthermore, we confirmed that the number of emission sites increases by observing the luminescent properties of CNT films after the straightening. These findings here suggest that ion irradiation treatment is an effective method for achieving uniform field emission and to reduce the electrical aging time.

Keywords

References

  1. M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris, Carbon Nanotubes synthesis, Structure, Properties, and Applications, (Springer, 2000), p. 391
  2. D. Tomanek and R. J. Enbody, Science and Applications of Nanotubes, (Kluwer Academic/Plenum Publisher, New York, (1999), P. 239
  3. W. A. de Heer, A. Ch$\^a$telain, and D. Ugarte, Science 270, 1179 (1995) https://doi.org/10.1126/science.270.5239.1179
  4. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Thobler, A. M. Cassell, and H. Dai, Science 283, 512 (1999) https://doi.org/10.1126/science.283.5401.512
  5. D. -H. Kim, H. -R. Lee, M. -W. Lee, J. -H. Lee, J. -G. Jee, and S. -Y. Lee, Chem. Phys. Lett. 355, 53 (2002) https://doi.org/10.1016/S0009-2614(02)00166-5
  6. A. Wadhawan, R. E. Stallcup II, and J. M. Perez, Appl. Phys. Lett. 78, 108 (2001) https://doi.org/10.1063/1.1338493
  7. W. Yi, T. W. Jeong, S. G. Yu, J. N. Heo, C. S. Lee, J. H. Lee, W. S. Kim, J. -B. Yoo, and J. M. Kim, Adv. Mater. 14, 1464 (2002) https://doi.org/10.1002/1521-4095(20021016)14:20<1464::AID-ADMA1464>3.0.CO;2-4
  8. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, Science 282, 1105 (1998) https://doi.org/10.1126/science.282.5391.1105
  9. L. Nilsson, O. Groening, C. Emmemegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, K. -M. Bonard, and K. Kern, Appl. Phys. Lett. 76, 2071 (2000) https://doi.org/10.1063/1.126258
  10. J. S. Suh, K. S. Jeong, J. S. Lee, and I. Han, Appl. Phys. Lett. 80, 2392 (2002) https://doi.org/10.1063/1.1465109
  11. V. Semet, Vu Thien Binh, P. Vincent, D. Guillot, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, P. Legagneux, and D. Pribat, Appl. Phys. Lett. 81, 343 (2002) https://doi.org/10.1063/1.1489084
  12. K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. Priro, P. Legagneux, F. Wyczisk, D. Pribat, and D. G. Hasko, Appl. Phys. Lett. 80, 2011 (2002) https://doi.org/10.1063/1.1461868
  13. X. Xu and G. R. Brandes, Appl. Phys. Lett. 74, 2549 (1999) https://doi.org/10.1063/1.123894
  14. J. T. L. Thong, C. H. Oon, W. K. Eng, W. D. Zhang, and L. M. Gan, Appl. Phys. Lett. 79, 2811 (2001) https://doi.org/10.1063/1.1412590
  15. W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin, Appl. Phys. Lett. 75, 2549 (1999)
  16. Philip Kim and C.M. Lieber, Science 286, 2148 (1999) https://doi.org/10.1126/science.286.5447.2148
  17. R.H. Baughamn, C. Cui, A.A. Zakhidov, Z. Lqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D.D. Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, Science 284, 1340 (1999) https://doi.org/10.1126/science.284.5418.1340
  18. Y. Wei, C. Xie, K. A. Dean, and B. F. Coll, Appl. Phys. Lett. 79, 4527 (2001) https://doi.org/10.1063/1.1429300
  19. R. H. Fowler and L. Nordheim, Proc. R. Soc. London Ser. A 119,173 (1928)
  20. M. Shiraishi and M. Ata, Carbon 29, 1913 (2001)
  21. J. -M Bonard, K. A. Dean, B. F. Coll, and C. Klinke, Phys. Rev. Lett. 89, 197602 (2002) https://doi.org/10.1103/PhysRevLett.89.197602
  22. C. J. Edgcombe and U. Valdr$`e$, Philos. Mag. B 82, 987 (2002)
  23. C. Y. Zhi, X. D. Bai, and E. G. Wang, Appl. Phys. Lett.81, 1690 (2002) https://doi.org/10.1063/1.1503175
  24. J. S. Kim, K. S. Ahn, C. O. Kim, and J. P. Hong, Appl. Phys. Lett. 82, 1607 (2003) https://doi.org/10.1063/1.1559654
  25. A. Sawada, M. Iriguchi, W. J. Zhao, X. Ochiai, and M. Takai, Proc. 14th Int. Vacuum Microelectronics Conf., 29 (2001)
  26. S. H. Choi, H. H. Han, T. Y. Lee, J. B. Yoo, and C. Y. Park, Proc. 14th Int. Vacuum Microelectronics Conf., 35, (2001)
  27. D. G. McCulloch, S. Prawer, and A Hoffman, Phys. Rev. B 50, 5905 (1994)
  28. F. Tuinstra, J. L. Koenig, J. Chem. Phys., 53, 1126 (1970) https://doi.org/10.1063/1.1674108
  29. D. -H Kim, H. -S. Yang, H. -D. Kang, and H. -R. Lee, Chem. Phys. Lett. 368, 439 (2003) https://doi.org/10.1016/S0009-2614(02)01868-7