DOI QR코드

DOI QR Code

탄소/페놀 8-매 주자직 복합재료의 3차원 열기계적 등가물성치에 관한 연구

Measurement and Prediction of 3-Dimensional Thermo-Mechanical Propertoes of Carbon-phenolic 8-harness Satin Weave Composites

  • 우경식 (충북대학교 구조시스템공학과) ;
  • 김필종 (충북대학교 구조시스템공학과 대학원) ;
  • 윤광준 (건국대학교 항공우주공학과) ;
  • 구남서 (건국대학교 항공우주공학과)
  • 발행 : 2003.09.01

초록

본 연구에서는 탄소/페놀 8-매 주자직 복합재료의 기하학적 매개변수를 고려하여 3차원 열적 및 기계적 등가물성치를 예측하였다. 등가탄성계수와 열팽창계수는 일축인장하중과 순수전단, 가상의 온도변화 등을 수치적으로 모사하는 수치실험을 통하여 계산하였다. 8-매주자직 복합재료의 미세구조는 마크로요소를 통하여 모델링 하였고 단위구조해석을 위해 주기경계조건을 유도하였다. 또한 다양한 층간 위상차를 고려하기 위해 모작위 표본 해석을 수행한 후 그 결과에 대하여 통계처리를 수행하였고, 해석결과는 인접층간 위상차와 적층수 및 굴곡도 등의 매개변수가 등가물성치에 미치는 영향의 관점에서 조사되었다. 그리고 시편에 대한 실험을 실시하여 계산결과와 비교하였다.

In this paper, three-dimensional thermo-mechanical properties of carbon-phenolic 8-hamess satin weave composites were predicted considering geometric parameters of microstructures. The effective properties were calculated by a series of numerical experiments based on unit cell analysis. The microstructural details were modeled through macro-elements, and the periodic boundary conditions were derived for corresponding un it cell types. The Monte Carlo method was employed to consider the random phase shift between the layers, and the results were investigated on the effect of the geometric parameters of shift, number of layers and waviness ratios. Experimental tests were also performed and the results were compared.

키워드

참고문헌

  1. Dasgupta, A., Agarwal, R. K. and Bhandarkar, S. M., "Three-dimensional modeling of woven-fabric composites for effective thermomechanical and thermal properties", Composites Science and Technology, Vol. 56, pp.209-223, 1996. https://doi.org/10.1016/0266-3538(95)00111-5
  2. Masters, J. and Ifju, P., "A phenomenological study of triaxially braided textile composites loaded in tension", Composites Science and Technology, Vol.56, pp.347-358, 1996. https://doi.org/10.1016/0266-3538(95)00106-9
  3. Ishikawa, T. and Chou, T.-VV., "Stiffness and strength behavior of woven fabric composites",Journal of Material Science, Vol. 17, pp.3211-3220, 1982. https://doi.org/10.1007/BF01203485
  4. Ishikawa, T. and Chou, T.-W., "One-dimensional micromechanical analysis of woven fabric composites", AIAA Journal, Vol. 21, No. 12, pp.1714-1720, 1983. https://doi.org/10.2514/3.8314
  5. Ishikawa, T., Matsushima, M., Hayashi, Y. and Chou, T. W., "Experimental confirmation of the theory of elastic moduli of fabric composites", Journal of Composite Materials, Vol. 19, pp.443-458, 1985. https://doi.org/10.1177/002199838501900504
  6. Whitcomb, J. D., "Three-dimensional stress analysis of plain weave composites." In Composite Materials : Fatigue and Fracture, ASTM STP 1110, T. K. O'Brien ed., American Society for Testing and Materials, pp.417-438, 1991.
  7. Blackketter, D. M., Walrath, D. E. and Hanson, A. C, "Modeling damage in a plain weave fabric-reinforced composite materials", Journal of Composites Technology & Research, Vol. 15, No. 2, pp.136-142, 1993. https://doi.org/10.1520/CTR10364J
  8. Foye, R., "Mechanics of fabric reinforced composites", NASA Conference Publication 3038, pp.237-247, 1989.
  9. Woo, K. and Whitcomb, J. D., "Macro finite element using subdomain integration", Communications in Numerical Methods in Engineering, Vol.9, pp.937-949, 1993. https://doi.org/10.1002/cnm.1640091202
  10. Whitcomb, J. D. and Woo, K., "Enhanced direct stiffness method for finite element analysis of textile composites", Composite Structures, Vol. 9, pp.937-949, 1994.
  11. 우경식, 서영욱 "섬유다발 배열 및 적층수에 따른 평직복합재료 등가물성치의 변화에 대한 통계적 연구" 한국복합재료학회지, 제13권, 제6호, pp.63-72, 2000.
  12. Woo, K. and Whitcomb, J. D., "Effects of Fiber Tow Misalignment on the Engineering Properties of Plain Weave Textile Composites", Composite Structures, Vol.37(3/4), pp.343-355, 1997. https://doi.org/10.1016/S0263-8223(97)00025-1
  13. Raju, I. S., Craft, W. J. and Avva, V. S. "Thermal expansion characteristics of woven fabric composites", Proceedings of Indo-US Workshop on Composite Materials for Aerospace Applications, Bangalore, India, 1990.
  14. Tan P., L. Tong, and Steven, G., Behavior of 3D orthogonal woven CFRP composites. Part II. FEA and analytical modeling approaches, Composites: Part A 31, pp.273-281, 2000. https://doi.org/10.1016/S1359-835X(99)00071-8
  15. http://www.matweb.com
  16. ASTM D 3171 Standard Test Method for Fiber Content of Resin Matrix Composites by Matrix Composite Materials, 1998.
  17. Chamis, C. C, "Mechanics of Composite Materials: Past, Present, and Future", Journal of Composites Technology and Research, Vol. 11, No. 1, pp.3-14, 1989. https://doi.org/10.1520/CTR10143J
  18. Shapery, R. A., "Thermal Expansion Coefficients of Composite Materials Based on Energy Principles", Journal of Composite Materials, Vol. 2, No. 3, pp.380-404, 1968. https://doi.org/10.1177/002199836800200308
  19. Hazelrgg, G. A. Systems Engineering : An Approach to Information-Based Design, Upper Saddle River, NJ: Prenrice-Hall, Inc., pp.63-77, 1996.