Abstract
This study was conducted to develop effective manufacturing methods of a total mixed ration(TMR) composed of broiler litter(BL) and bakery by-product(BB) for ruminants. Five experiments included a small-scaled manufacture of TMR using a deepstacking method(Exp. 1), its pelletization(Exp. 2), its field-scaled manufacture(Exp. 3), a field-scaled manufacture using an ensiling method(Exp. 4), and a mixing process of deepstacked BL and BB prior to feeding(Exp. 5). BL and BB were mixed at a ratio which makes total digestible nutrients of the TMR 69%. For each experiment, temperature, appearance and physico-chemical properties were recorded and analyzed. The chemical composition data revealed that the mixture of BL and BB showed nutritionally additive balance which resulted from a considerable increase(P<0.05) of organic matter and a desirable decrease(P<0.05) of protein and fiber up to the requirement level for growing ‘Hanwoo’ steers. Deepstacking of BL and BB in Exp. 1 and 3 resulted in a sufficient increase of stack temperature for pasteurization, little chemical losses, appearance of white fungi on the surface, and partial charring due to excess stack temperature. For Exp. 2, its pelleting, which was successful using a simple, small-scaled pelletizer, resulted in a little loss(P<0.05) of organic matter and an increase(P<0.05) of indigestible protein(ADF-CP). Ensiling the mixture in Exp. 4 made little effect on chemical composition; however, one month of the ensiling period was not enough for favorable silage parameters. Deepstacking BL alone in Exp. 5 tended(P<0.1) to decrease true protein : NPN ratio and hemicellulose content and increase ADF-CP content due to the heat damage occurred. Deepstacking or ensiling of BL-BB mixtures and simple incorporating of BB into deepstacked BL prior to feeding could be practical and nutrients-preservative methods in TMR manufacture for beef cattle, although ensiling needed further hygienic evaluation.
본 연구에서는 육계분과 제과부산물로 구성되는 반추가축용 TMR의 효과적인 제조 방법 모색을 위하여 총 5회의 실험을 수행하였으며, 각 실험의 내용은 다음과 같다. 실험 1: 퇴적발효 공법을 이용한 TMR의 소규모(1 ton) 제조. 실험 2: 퇴적발효 공법을 이용하여 제조된 TMR의 펠렛화. 실험 3: 퇴적발효 공법을 이용한 TMR의 현장 규모(15 ton) 제조. 실험 4: 혐기발효 공법을 이용한 TMR의 현장 규모(0.5 ton 타이콘백 이용) 제조. 실험 5: 육계분 단독 퇴적발효 후 급여 시 TMR 제조. 선별 육계분과 건조 제과부산물은 총가소화영양소(TDN) 함량이 69%(체중 200 kg의 육성 한우 요구량 충족)가 되도록 혼합되었으며, 각 실험별 처리에 따른 온도 변화, 외관적 특성 및 물리화학적 성분 변화를 분석하였다. 육계분에 제과부산물을 혼합함으로서 OM은 상당히 증가하였고(P<0.05), 과다한 단백질과 섬유소 함량은 육성우 요구량 수준으로 낮아지는(P<0.05) 등의 영양적으로 상호 보완적인 조화를 보였다. 실험 1과 3의 퇴적발효 공법 적용 시 발생된 발효열은 살균 효과를 충족시킬 정도로 상승하였으며, 공정 중의 화학적 성분상의 손실은 미미하였고, 표층의 공기 접촉 부위에 흰 곰팡이가 발생하고, 내부 고열로 인한 부분적 숯화(charring) 현상이 나타났다. 이의 펠렛화 시(실험 2) 단순 소형 펠렛기의 이용이 충분히 가능하였으며, 공정 중의 약간의 OM 손실과 ADF-CP 증가 현상이 수반되었다(P<0.05). 실험 4의 혐기발효 공법 적용 시 공정 간의 true protein : NPN 비율의 감소(P<0.05) 현상 이외에는 별다른 화학적 성분상의 차이는 없었으나, 한 달간의 발효기간만으로는 양호한 발효 성상을 보이지 못하였다. 실험 5의 육계분 단독 퇴적발효는 true protein : NPN 비율 감소(P<0.1), 섬유소 중 hemicellulose 함량 감소(P<0.05) 및 ADF-CP 함량 증가(고열로 인해)를 초래하는 경향이었고(P<0.1), 퇴적발효된 육계분을 급여 전에 제과부산물과 혼합하는 것도 위생적이고, 영양 보전적인 방법인 것으로 사료되었다.