Test of the Hypothesis based on Nonlinear Regression Quantiles Estimators

  • Choi, Seung-Hoe (Department of General Studies, Hankuk Aviation University)
  • Published : 2003.05.31

Abstract

This paper considers the likelihood ratio test statistic based on nonlinear regression quantiles estimators in order to test of hypothesis about the regression parameter $\theta_o$ and derives asymptotic distribution of proposed test statistic under the null hypothesis and a sequence of local alternative hypothesis. The paper also investigates asymptotic relative efficiency of the proposed test to the test based on the least squares estimators or the least absolute deviation estimators and gives some examples to illustrate the application of the main result.

Keywords

References

  1. Journal of the American Statistical Association v.73 Asymptotic properties of least absolute error regression Bassett G.;Koenker, R.
  2. On the L₁-norm estimation for nonlinear regression model Choi, S. H.
  3. The Korean Communications in Statistics v.2 Test of hypothesis based on LAD estimators in nonlinear regression models Choi, S. H.;Kim, H. K.
  4. Journal of the Korean Statistical Society v.30 Nonlinear regression quantiles estimation Choi, S. H.;Kim, H. K.;Park, K. O.
  5. Journal of the Korean Data & Information Science Society v.11 Asymptotic properties of regression quantiles in nonlinear models Choi, S. H.;Kim, T. S.;Park, K. O.
  6. Nonlinear regression model Gallant, A. R.
  7. The Annal of Mathematical Statistics v.40 Asymptotic properties of nonlinear least squares estimators Jennrich, R. I.
  8. Nonparametric Statistics v.3 Regression quantiles and trimmed least squares estimators in nonlinear regression model Jureckova, J.;Prochazka, B.
  9. Econometrica v.46 Regression quantiles Koenker, R.;Bassett, G.
  10. Econometrica v.50 Robust tests for heterocedasticity based on regression quantiles Koenker, R.;Bassett, G.
  11. Testing statistical hypotheses Lehmann, E. L.
  12. Communication in Statistics-A v.21 Nonparametric estimates of the nuisance parameter in the LAD tests Liu, Z. J.
  13. The Annals of Statistics v.9 Asymptotic theory of nonlinear least squares estimation Wu, C. F.