DOI QR코드

DOI QR Code

Preparation of Poly(lactic acid) Scaffolds by the Particulate Leaching

염 추출법에 의한 폴리락틱산 다공성 지지체 가공

  • 이지혜 (기능성 고분자 신소재 연구센터) ;
  • 이종록 (기능성 고분자 신소재 연구센터) ;
  • 강호종 (단국대학교 공과대학 고분자공학과)
  • Published : 2003.12.31

Abstract

Particulate leaching method for the preparation of porous PLLA scaffolds was carried out and especially, the effect of PLLA/$CHCl_3$ solution concentration on the salt leaching rate and the pore structure of PLLA scaffolds were considered. It was found that maintaining lower PLLA/$CHCl_3$ concentration and higher $CHCl_3$ evaporation temperature in the preparation of PLLA/NaCl mixtures resulted in the enhancement of salt leaching rat e and higher porosity. This is understood that those conditions could minimize the formation of dense PLLA layer on the surface of PLLA/NaCl mixture as well as introducing better porosity on the surface. Higher salt leaching temperature accelerated the salt leaching rate but it seems that there is no influence on the porosity of PLLA scaffolds.

Keywords

References

  1. D. W. Hutmacher, Biotechnology, 12, 689 (1994) https://doi.org/10.1038/nbt0794-689
  2. R. Langer and J. P. Vacanti, Science, 260, 920 (1993) https://doi.org/10.1126/science.8493529
  3. L. G. Cima, J. P.Vacanti, D. Ingber, D. Mooney, and R. Langer, J. Biomech. Eng., 113, 143 (1991) https://doi.org/10.1115/1.2891228
  4. D. L. Wise, 'Biopolymeric Controlled System', Vol. 1, CRS Press, Boca Raton, Ch. 8 (1985)
  5. A. G. Mikos, Y. Bae, L. G. Cima, D. Ingber, J. P. Vacanti, and R. Langer, J. Biomed. Mater. Res., 27, 183 (1993) https://doi.org/10.1002/jbm.820270207
  6. S. Gogolewski and A. J. Pennings, Colloid Polrm. Sci., 261, 477 (1983) https://doi.org/10.1007/BF01419831
  7. A. G. Mikos, A. J. Sarakinos, S. M. Leite, J. P. Vacanti, and R. Langer, Biomaterials, 14, 323 (1993) https://doi.org/10.1016/0142-9612(93)90049-8
  8. A. G. Mikos, A. J. Thorsen, L. A. Czerwonka, Y. Bae, R. Langer, D. N. Winslow, and J. P. Vacanti, polymer, 35, 1068 (1994) https://doi.org/10.1016/0032-3861(94)90953-9
  9. L. E. Freed, J. C. Marquis, A. Nohria, J. Emmanual, A. Mikos, and R. Langer, J. Biomed. Mater. Res., 11, 27 (1993)
  10. Y. S. Nam and T. G. Park, Biomaterials, 20, 1783 (1999) https://doi.org/10.1016/S0142-9612(99)00073-3
  11. L. D. Harris, B. S. Kim, and D. J. Mooney, J. Biomed. Mater. Res., 42, 396 (1998) https://doi.org/10.1002/(SICI)1097-4636(19981205)42:3<396::AID-JBM7>3.0.CO;2-E
  12. K. Whang, C. H. Tomas, K. E. Healy, and G. Nuber, Polymer, 36, 837 (1995) https://doi.org/10.1016/0032-3861(95)93115-3
  13. K. P. Andriano, Y. Tabata, Y. Ikada, and Y. Heller, J. Biomed. Mater. Res., 48, 602 (1999) https://doi.org/10.1002/(SICI)1097-4636(1999)48:5<602::AID-JBM3>3.0.CO;2-6
  14. A. Park, B. Wu, and L. G. Griffith, J. Biomater. Sci. Polym. Ed., 9, 89 (1998) https://doi.org/10.1163/156856298X00451
  15. D. J. Mooney, D. F. Baldwin, N. P. Suh, J. P. Vacanto, and R. Langer, Biomaterials, 17, 1417 (1996) https://doi.org/10.1016/0142-9612(96)87284-X
  16. R. C. Thomson, M. J. Yaszemski, J. M. Powers, and A. G. Mikos, J. Biomater Sci. Polym. Ed., 7, 23 (1995) https://doi.org/10.1163/156856295X00805
  17. Y. S. Nam, J. J. Yoon, and T. G. Park, J. Biomed. Mater. Res., 53, 1 (2000) https://doi.org/10.1002/(SICI)1097-4636(2000)53:1<1::AID-JBM1>3.0.CO;2-R