References
- Batoz, J. L. and Katili, I. (1992), "On a simple triangular Reissner/Mindlin plate element based on incompatible modes and discrete constraints", Int. J. Num. Meth. Eng., 35, 1603-1632. https://doi.org/10.1002/nme.1620350805
- Boay, C. G. (1995), "Frequency analysis of rectangular isotropic plates carrying a concentrated mass", Compt. Struct. 56(1), 39-48.
- Corr, R. B. and Jennings. A. (1976), "A simultaneous iteration algorithm for symmetric eigenvalue problems", Int. J. Num. Meth. Eng., 10, 647-663. https://doi.org/10.1002/nme.1620100313
- Dey, P. Private communication.
- Gallaghar, R. H. (1975), Finite Element Analysis, Fundamentals, Prentice-Hall, Englewood Cliffs, NJ.
- Hinton, E., Rock, T. and Zienkiewicz, O. C. (1976), "A note on mass lumping and related processes in the finite element method", Earthquake Eng. and Struct. Dynamics, 4, 245-249. https://doi.org/10.1002/eqe.4290040305
- Liew, K. M. (1992), "Response of plates of arbitrary shape subjected to static loading", J. Eng. Mech. ASCE, 118(9), 1783-1794. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:9(1783)
- Liew, K. M. and Lam, K. Y. (1991), "A Rayleigh-Ritz approach to transverse vibration of isotropic and anisotropic trapezoidal plates using orthogonal plate functions", Int. J. Solids Struct. 27(2), 189-203. https://doi.org/10.1016/0020-7683(91)90228-8
- Liew, K. M. and Lim, C. W. (1995), "Vibratory characteristics of general laminates, I: symmetric trapezoids", J. Sound. Vibr. 183, 615-642. https://doi.org/10.1006/jsvi.1995.0276
- Lim, C. W., Liew, K. M. and Kitipornchai, S. (1996), "Vibration of arbitrarily laminated plates of general trapezoidal planform", J. Acous. Soc. Am. 100, 3674-3685. https://doi.org/10.1121/1.417230
- Liew, K. M., Karunasena, W., Kitipornchai, S. and Chen, C. C. (1999), "Vibration of unsymmetrically laminated thick quadrilateral plates", J. Acous. Soc. Am. 105, 1672-1681. https://doi.org/10.1121/1.426706
- Petrolito, J. (1989), "A modified ACM element for thick plate analysis", Compt. Struct., 32, 1303-1309. https://doi.org/10.1016/0045-7949(89)90307-6
- Reddy, J. N. (1989), "On refined computational modes of composite laminates", Int. J. Num. Meth. Eng., 27, 361-382. https://doi.org/10.1002/nme.1620270210
- Reddy, J. N. and Khdeir, A. A. (1989), "Buckling and vibration of laminated composite plates using various plate theory", AIAAJ, 27, 1808-1817. https://doi.org/10.2514/3.10338
- Sengupta, D. (1991), "Stress analysis of flat plates with shear using explicit stiffness matrix", Int. J. Num. Meth. Eng., 32, 1389-1409. https://doi.org/10.1002/nme.1620320703
- Timoshenko, S. P. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-Hill, New York.
- Wanji, C. and Cheung, Y. K. (2000), "Refined quadrilateral element based on Mindlin/Reissner plate theory", Int. J. Num. Meth. Eng., 47, 605-627. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<605::AID-NME785>3.0.CO;2-E
- Yuan, F. G. and Miller, R. E. (1989), "A cubic triangular finite element for flat plates with shear", Int. J. Num. Meth. Eng., 28, 109-126. https://doi.org/10.1002/nme.1620280109
- Zhongnian Xu. (1992), "A thick-thin triangular plate element", Int. J. Num. Meth. Eng., 33, 963-973. https://doi.org/10.1002/nme.1620330506
- Zienkiewicz, O. C. (1971), The Finite Element Method in Engineering Science, McGraw-Hill, New York.
- Zienkiewicz, O. C. and Taylor, R. L. (1988), The Finite Element Method (two volumes), McGraw-Hill, New York.
Cited by
- Free vibration analysis of moderately thick trapezoidal symmetrically laminated plates with various combinations of boundary conditions vol.36, 2012, https://doi.org/10.1016/j.euromechsol.2012.03.004
- Analysis of shear deformable laminated composite trapezoidal plates vol.30, pp.8, 2009, https://doi.org/10.1016/j.matdes.2008.12.016
- Flutter analysis of hybrid metal-composite low aspect ratio trapezoidal wings in supersonic flow vol.30, pp.1, 2017, https://doi.org/10.1016/j.cja.2016.12.016
- A general Ritz formulation for the free vibration analysis of thick trapezoidal and triangular laminated plates resting on elastic supports vol.69, 2013, https://doi.org/10.1016/j.ijmecsci.2012.12.016
- Vibration behavior of trapezoidal sandwich plate with functionally graded-porous core and graphene platelet-reinforced layers vol.36, pp.1, 2003, https://doi.org/10.12989/scs.2020.36.1.047