DOI QR코드

DOI QR Code

Advanced numerical model for the fire behaviour of composite columns with hollow steel section

  • Renaud, C. (Laboratory of Structural Mechanics, INSA-Rennes) ;
  • Aribert, J.M. (Laboratory of Structural Mechanics, INSA-Rennes) ;
  • Zhao, B. (Fire Research and Engineering Section, CTICM)
  • Received : 2002.09.25
  • Accepted : 2003.03.25
  • Published : 2003.04.25

Abstract

A numerical model is presented to simulate the mechanical behaviour of composite steel and concrete columns taking into account the interaction between the hollow steel section and the concrete core. The model, based on displacement finite element methods with an Updated Lagrangian formulation, allows for geometrical and material non linearities combined with heating over all or a part of the section and column length. Comparisons of numerical calculations made using the model with 33 fire resistance tests show that the model is able to predict the fire resistance, expressed in minutes of fire exposure, of composite columns with a good accuracy.

Keywords

References

  1. Aribert, J.M. and Zhao, B.(1999), "Analysis of the fire behaviour of composite steel-concrete structures", French Journal of Steel Construction, $n^{\circ}$3, 37-48.
  2. Bathe, K.J.(1982), Finite Element Procedures in Engineering Analysis, Prentice Hall Civil Engineering.
  3. CEN, Eurocode 4-Part1.2 (ENV) (1994), "Design ofcomposite steel and concrete structures: structural fire design".
  4. Franssen, J.M.(1987), "Etude du comportement au feu des structures mixtes acier-beton", These de Doctorat, universite de Liege.
  5. Grimault, J.P. (1980) "Determination de la duree au feu des profils creux remplis de beton", Rapport final etablipar Cometube, Commission des Communautes Europeennes, Recherche Technique Acier, Paris.
  6. Han, L.H. (2001). "Fire performance of concrete filled steel tubular beam-columns", Journal of Constructional Steel Research, 57(6), 697-711. https://doi.org/10.1016/S0143-974X(00)00030-4
  7. Han, L.H., Yang, Y.F. and Xu, L. (2003a). "An experimental study and calculation of the fire resistance of concrete-filled hollow steel columns", Journal of Constructional Steel Research, 59(4), 427-452. https://doi.org/10.1016/S0143-974X(02)00041-X
  8. Han, L.H., Zhao, X.L., Yang, Y.F. and Feng, J.B. (2003b). "Experimental study and calculation of fire resistanceof concrete-filled hollow steel columns", Journal of Structural Engineering, ASCE, 129(3), 346-356. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:3(346)
  9. Klingsch, W. and Wittbecker, F.W. (1988), "Fire resistance of hollow section composite columns of small crosssections", Bergische Universitat, Wuppertal, West Germany
  10. Kordina, K.and Klingsch, W.(1983), "Fire resistance of composite columns with concrete filled hollowsections", Research report, CIDECT 15 C1/C2 83/27.
  11. Lie, T.T. and Caron, S.E.(1988), "Fire resistance of circular hollow steel columns filled with siliceous aggregate Concrete", Test results, internal report $n^{\circ}$570, Institute for research in Construction, National Research Council of Canada, Ottawa, Canada.
  12. Lie,T.T.and Caron, S.E.(1988), "Fireresistance of circular hollow steel columns filled with carbonate aggregate Concrete", Test results, lnternal report $n^{\circ}$573, lnstitute for research in Construction, National Research Council of Canada, Ottawa, Canada.
  13. Lie, T.T. and Chabot, M(1990), "A method to predict the fire resistance of circular concrete filled hollow steelcolumns", Journal of Fire Protection Engineering, 2(4).
  14. Lie, T.T. and Chabot, M.(1992), "Experimental studies on the fire resistance of hollow steel columns filled withplain concrete", NRC-CNRC, lnternal report 611.
  15. Lie, T.T. and Chabot, M.(1994), "Fire resistance tests of square hollow steel columns filled with reinforcedconcrete", Test results, lnternal report $n^{\circ}$673, lnstitute for research in Construction, National Research Council of Canada, Ottawa, Canada.
  16. Lie, T.T.,(1994), "Fire resistance of circular steel columns filled with bar-reinforced concrete", Journal of Structural Engineering, 120(4).
  17. Lie, T.T., and Stringer, D.C.(1994), "Calculation of fire resistance of steel hollow structural steel columns withplain concrete", Can. J. Civ. Engrg., 21(3), 382-385. https://doi.org/10.1139/l94-041
  18. Lie, T.T. and lrvin, R.J.(1995), "Fire resistance of rectangular steel columns filled with bar-reinforced concrete", Journal of Structural Engineering, 121(5).
  19. Lie, T.T. and Kodur, V.K.R.(1996), "Fire resistance of steel columns filled with bar-reinforced concrete", Journal of Structural Engineering, 122(1).
  20. Omeagher, A.J., Bennetts, l.D., Hutchinson, G.L. and Steven, L.K.(1991), "Modelling of concrete filled tubularcolumns in fire", BHPR/ENG/R/91/031/PS69.
  21. Quast, U., Hass, R. and Rudoph, K.(1986), "A computer program for the determination of load bearing and deformation behaviour of uniaxial structural elements under fire action", Technical University Braunschweig.
  22. Renaud, C., Aribert,J.M., Zhao, B. and Grimault, J.P(2000), "Fire stability of steel-concrete composite columns with allow steel section made in high strength steel", French Journal of Steel Construction, $n^{\circ}$3, 5-18.
  23. Renaud, C., Aribert, J.M., and Zhao, B.(2002), "Proposal of a simple calculation model for the fire resistance of concrete filled hollow section columns", Proceeding of third European Conference on Steel Structures , 2, 1355-1366.
  24. Schleich, J.B.(1987), "Computer assisted analysis of the fire resistance of steel and composite concrete steel structures", CEC Research Report EUR 10828,EN, Luxembourg.
  25. Twilt, L. and Haar, P.W. (1984), "Analysis of the discrepancy between the french and german calculation methodsfor the fire resistance of concrete filled steel columns", lBBC-TNO-report $n^{\circ}$ B-84-480, September.
  26. Twilt, L. and Haar, P.W.(1985),"The effect of the mechanical properties and the thermal induced stresses on the discrepancy between the french and german calculation methods for the fire resistance of concrete filled steel columns", lBBC-TNO-report $n^{\circ}$ B-85-93, March.
  27. Twilt, L. and Haar, P.W. (1985), "The discrepancy between the french and german calculation methods for the fire resistance of concrete filled steel columns: proposition forharmonisation", lBBC-TNO-report $n^{\circ}$B-85-426, August.
  28. Wickstrom, U. and Sterner, E. (1990), "TASEF: fire technology report", Sweedish National Testing and Research.
  29. Zhao, B. and Aribert, J.M. (1996), "Finite element method for steel-concrete composite frames taking account of slip and large displacements", European Journal of Finite Element, 5(2), 221-249.
  30. Zhao, B. and Kruppa, J(1997), "Fire resistance of composite slabs with profiled steel sheet and of compositesteel-concrete beams Part 2: composite beams", Final report of European commission Eur 16822 EN on steel Research.

Cited by

  1. A new model for transient heat transfer model on external steel elements vol.8, pp.3, 2008, https://doi.org/10.12989/scs.2008.8.3.201
  2. Experimental tests on biaxially loaded concrete-encased composite columns vol.8, pp.5, 2008, https://doi.org/10.12989/scs.2008.8.5.423
  3. Simplified fire design for composite hollow-section columns vol.161, pp.6, 2008, https://doi.org/10.1680/stbu.2008.161.6.325
  4. Fiber beam model for fire response simulation of axially loaded concrete filled tubular columns vol.56, 2013, https://doi.org/10.1016/j.engstruct.2013.05.004
  5. Modeling thermo-mechanical behavior of concrete-filled steel tube columns with solid steel core subjected to fire vol.136, 2017, https://doi.org/10.1016/j.engstruct.2017.01.017
  6. Advanced model for predicting the fire response of concrete filled tubular columns vol.66, pp.8-9, 2010, https://doi.org/10.1016/j.jcsr.2010.03.002
  7. A Study on the fire-resistance of concrete-filled steel square tube columns without fire protection under constant central axial loads vol.8, pp.6, 2008, https://doi.org/10.12989/scs.2008.8.6.491
  8. Realistic modelling of thermal and structural behaviour of unprotected concrete filled tubular columns in fire vol.64, pp.10, 2008, https://doi.org/10.1016/j.jcsr.2007.09.014
  9. Proposal of a new method in EN1994-1-2 for the fire design of concrete-filled steel tubular columns vol.128, 2016, https://doi.org/10.1016/j.engstruct.2016.09.037
  10. Thermo-Mechanical Behavior of Steel-Concrete Composite Columns under Natural Fire Including Heating and Cooling Phases vol.35, pp.1663-4144, 2018, https://doi.org/10.4028/www.scientific.net/JERA.35.221
  11. Residual strength capacity of fire-exposed circular concrete-filled steel tube stub columns vol.6, pp.5, 2003, https://doi.org/10.12989/acc.2018.6.5.485
  12. Simplified robustness assessment of steel framed structures under fire-induced column failure vol.35, pp.2, 2003, https://doi.org/10.12989/scs.2020.35.2.199
  13. Temperature Attained in Intumescent Coating-Protected Concrete-Filled Circular Steel Tubular Sections under the Standard Fire Condition vol.148, pp.1, 2003, https://doi.org/10.1061/(asce)st.1943-541x.0003130