DOI QR코드

DOI QR Code

A new ALE formulation for sloshing analysis

  • Aquelet, N. (Universite de Lille, Laboratoire de Mecanique de Lille) ;
  • Souli, M. (Universite de Lille, Laboratoire de Mecanique de Lille) ;
  • Gabrys, J. (The Boeing Company, Rotorcraft Division) ;
  • Olovson, L. (L.S.T.C., Livermore Software Technology Corporation)
  • Received : 2002.12.04
  • Accepted : 2003.07.17
  • Published : 2003.10.25

Abstract

Arbitrary Lagrangian Eulerian finite element methods gain interest for the capability to control mesh geometry independently from material geometry, the ALE methods are used to create a new undistorted mesh for the fluid domain. In this paper we use the ALE technique to solve fuel slosh problem. Fuel slosh is an important design consideration not only for the fuel tank, but also for the structure supporting the fuel tank. "Fuel slosh" can be generated by many ways: abrupt changes in acceleration (braking), as well as abrupt changes in direction (highway exit-ramp). Repetitive motion can also be involved if a "sloshing resonance" is generated. These sloshing events can in turn affect the overall performance of the parent structure. A finite element analysis method has been developed to analyze this complex event. A new ALE formulation for the fluid mesh has been developed to keep the fluid mesh integrity during the motion of the tank. This paper explains the analysis capabilities on a technical level. Following the explanation, the analysis capabilities are validated against theoretical using potential flow for calculating fuel slosh frequency.

Keywords

References

  1. Amsden, A.A. and Hirt, C.W. (1973), "YAQUI: An arbitrary Lagrangian-Eulerian computer program for fluid flow at all speeds", Los Alamos Scientific Laboratory, LA-5100.
  2. Benson, D.J. (1992), "Computational methods in Lagrangian and Eulerian hydrocodes", Comput. Methods Appl. Mech. Eng., 99, 235-394. https://doi.org/10.1016/0045-7825(92)90042-I
  3. Benson, D.J. (1992), "Momentum advection on a staggered mesh", J. of Computational Physics, 100(1), May 1992, 143-162. https://doi.org/10.1016/0021-9991(92)90316-Q
  4. Benson, D.J. (1997), "A mixture theory for contact in multi-material Eulerian formulations", Comput. Methods Appl. Mech. Eng. 140, 59-86. https://doi.org/10.1016/S0045-7825(96)01050-X
  5. Benson, David J. (1998), "Eulerian finite element methods for the micromechanics of heterogenous materials: Dynamics prioritization of material interfaces", Comput. Meth. Appl. Mech. Eng., 150, 343-360.
  6. Blevins, R. (1995), Formulas for Natural Frequency & Mode Shape, Frieger Publishing Corporation.
  7. Flanagan, D.P. and Belytschko, T. (1981), "A uniform strain hexahedron and quadrilateral and orthogonal hourglass control", Int. J. Numer. Meths, Eng., 17, 679-706. https://doi.org/10.1002/nme.1620170504
  8. Hallquist, J.O. (1998), "LS-DYNA theoretical manual", Livermore Software Technology Company.
  9. Hughes, T.J.R., Liu, W.K. and Zimmerman, T.K. (1981), "Lagrangian Eulerian finite element formulation for viscous flows", J. Comput. Methods Appl. Mech. Engrg., 21, 329-349.
  10. Lee, S.-Y., Cho, J.-R., Park, T.-H. and Lee, W.-Y. (2002), "Baffled fuel-storage container: Parametric study on transient dynamic characteristics", Struct. Eng. Mech., An Int. J., 13(6), 653-670. https://doi.org/10.12989/sem.2002.13.6.653
  11. Nakayama, T. and Mori, M. (1996), "An Eulerian Finite Element method for time-dependent free-surface problems in hydrodynamics", Int. J. Numer. Methods in Fluids, 22(3), 175-194. https://doi.org/10.1002/(SICI)1097-0363(19960215)22:3<175::AID-FLD352>3.0.CO;2-F
  12. Richtmyer, R.D. and Morton, K.W. (1967), Difference Equations for Initial-Value Problems, Interscience Publishers, New York.
  13. Souli, M. and Zolesio, J.P. (2001), "Arbitrary Lagrangian-Eulerian and free surface methods in fluid mechanics", Comput. Methods Appl. Mech. Eng., 191.
  14. Souli, M., Ouahsine, A. and Lewin, L. (2000), "ALE formulation for fluid-structure interaction problems", Comput. Methods Appl. Mech. Eng., 190, 659-675. https://doi.org/10.1016/S0045-7825(99)00432-6
  15. Summit Racing Equipment, Akron, Ohio 44309.
  16. Van Leer, B. (1977), "Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection", J. of Computational Physics, 23, 276-299. https://doi.org/10.1016/0021-9991(77)90095-X
  17. Wiegel, L.R., Oceanographical Engineering, Prentice hall Inc Publisher.
  18. Woodward, P.R. and Collela, P. (1982), "The numerical simulation of two-dimensional fluid flow with strong shocks", Lawrence Livermore National Laboratory, UCRL-86952.
  19. Young, D.L. (1982),"Time-dependent multi-material flow with large fluid distortion", Numerical Methods for Fluids Dynamics, Ed. Morton, K.W. and Baines, M.J., Academic Press, New-York.

Cited by

  1. Progressive damage modeling in laminate composites under slamming impact water for naval applications vol.167, 2017, https://doi.org/10.1016/j.compstruct.2017.02.004
  2. Numerical analysis of blast-induced wave propagation using FSI and ALEmulti-material formulations vol.36, pp.10-11, 2009, https://doi.org/10.1016/j.ijimpeng.2009.03.007
  3. High explosive simulation using multi-material formulations vol.26, pp.10, 2006, https://doi.org/10.1016/j.applthermaleng.2005.10.018
  4. Numerical simulation of underwater explosions using an ALE method. The pulsating bubble phenomena vol.41, 2012, https://doi.org/10.1016/j.oceaneng.2011.12.015
  5. FSI methods for seismic analysis of sloshing tank problems vol.11, pp.2, 2010, https://doi.org/10.1051/meca/2010025
  6. Water impact tests and simulations of a steel structure vol.3, pp.1, 2012, https://doi.org/10.1108/17579861211209966
  7. Comparisons of Multi Material ALE and Single Material ALE in LS-DYNA for Estimation of Acceleration Response of Free-fall Lifeboat vol.48, pp.6, 2011, https://doi.org/10.3744/SNAK.2011.48.6.552
  8. Conceptual evaluation of fluid–structure interaction effects coupled to a seismic event in an innovative liquid metal nuclear reactor vol.239, pp.11, 2009, https://doi.org/10.1016/j.nucengdes.2009.08.008
  9. Local water slamming impact on sandwich composite hulls vol.27, pp.4, 2011, https://doi.org/10.1016/j.jfluidstructs.2011.02.001
  10. Investigation on sloshing and vibration mitigation of water storage tank of AP1000 vol.90, 2016, https://doi.org/10.1016/j.anucene.2015.12.014
  11. Fluid–shell structure interaction analysis by coupled particle and finite element method vol.85, pp.11-14, 2007, https://doi.org/10.1016/j.compstruc.2007.01.019
  12. The Investigation of Launching Parameters on the Motion Pattern of Freefall Lifeboat Using FSI Analysis vol.14, 2015, https://doi.org/10.1016/j.proeps.2015.07.091
  13. Dynamic response of AP1000 water tank with internal ring baffles under earthquake loads vol.127, 2017, https://doi.org/10.1016/j.egypro.2017.08.107
  14. Transient Response of a Projectile in Gun Launch Simulation Using Lagrangian and Ale Methods vol.4, pp.2, 2010, https://doi.org/10.1260/1750-9548.4.2.151
  15. Sloshing in concrete cylindrical tanks subjected to earthquake vol.163, pp.4, 2010, https://doi.org/10.1680/eacm.2009.163.4.261
  16. Finite-Element Analysis of Fluid-Structure Interaction in a Blast-Resistant Window System vol.136, pp.3, 2010, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000100
  17. Numerical simulation and transonic wind-tunnel test for elastic thin-shell structure considering fluid–structure interaction vol.28, pp.1, 2015, https://doi.org/10.1016/j.cja.2014.12.027
  18. Experimental and numerical investigation on the dynamic response of sandwich composite panels under hydrodynamic slamming loads vol.178, 2017, https://doi.org/10.1016/j.compstruct.2017.07.014
  19. FSI effects and seismic performance evaluation of water storage tank of AP1000 subjected to earthquake loading vol.280, 2014, https://doi.org/10.1016/j.nucengdes.2014.08.024
  20. Meshless method for shallow water equations with free surface flow vol.217, pp.11, 2011, https://doi.org/10.1016/j.amc.2010.07.048
  21. Application of nonlinear fluid–structure interaction methods to seismic analysis of anchored and unanchored tanks vol.32, pp.2, 2010, https://doi.org/10.1016/j.engstruct.2009.10.004
  22. Violent Fluid-Structure Interaction simulations using a coupled SPH/FEM method vol.10, 2010, https://doi.org/10.1088/1757-899X/10/1/012041
  23. Delayed mesh relaxation for multi-material ALE formulation vol.46, 2014, https://doi.org/10.1016/j.ijheatfluidflow.2014.01.003
  24. Numerical Evaluation of Dynamic Response for Flexible Composite Structures under Slamming Impact for Naval Applications 2018, https://doi.org/10.1007/s10443-017-9646-0
  25. Deployment of a Neo-Hookean membrane: experimental and numerical analysis vol.7, pp.1, 2013, https://doi.org/10.1260/1750-9548.7.1.41
  26. Characterization of Polymeric Membranes Under Large Deformations Using Fluid-Structure Coupling vol.07, pp.05, 2015, https://doi.org/10.1142/S1758825115500684
  27. Euler–Lagrange coupling with damping effects: Application to slamming problems vol.195, pp.1-3, 2006, https://doi.org/10.1016/j.cma.2005.01.010
  28. Computational modeling of human head under blast in confined and open spaces: primary blast injury vol.30, pp.1, 2014, https://doi.org/10.1002/cnm.2590
  29. Finite Element Modeling of Hydraulic Excavator in Soil Cutting Process vol.145, pp.1662-7482, 2011, https://doi.org/10.4028/www.scientific.net/AMM.145.240
  30. A Coupling Method for Hydrodynamic Ram Analysis: Experimental and Numerical Investigation vol.136, pp.1, 2014, https://doi.org/10.1115/1.4025342
  31. Numerical Simulation of the Ice Resistance in Pack Ice Conditions pp.1793-6969, 2018, https://doi.org/10.1142/S021987621844005X
  32. Numerical Simulation on the Resistance Performance of Ice-Going Container Ship Under Brash Ice Conditions vol.32, pp.5, 2018, https://doi.org/10.1007/s13344-018-0057-2
  33. Experimental Validation of a Coupled Fluid-Multibody Dynamics Model for Tanker Trucks vol.1, pp.1, 2003, https://doi.org/10.4271/2008-01-0777
  34. Estimation of Acceleration Response of Freefall Lifeboat using FSI Analysis Technique of LS-DYNA Code vol.47, pp.5, 2003, https://doi.org/10.3744/snak.2010.47.5.681
  35. Comparison of experimental and numerical sloshing loads in partially filled tanks vol.6, pp.1, 2003, https://doi.org/10.1080/17445302.2010.522372
  36. Numerical Evaluation of Nonlinear Response of Broad Cylindrical Steel Tanks under Multidimensional Earthquake Motion vol.28, pp.1, 2012, https://doi.org/10.1193/1.3672996
  37. Study on the dependence with the filling level of the sloshing wave pattern in a rectangular tank vol.32, pp.1, 2020, https://doi.org/10.1063/1.5133420
  38. Assessment of breaking waves and liquid sloshing impact vol.100, pp.3, 2003, https://doi.org/10.1007/s11071-020-05605-7
  39. Comprehensive Study on Sloshing Impacts for an Offshore 3D Vessel via the Integration of Computational Fluid Dynamics Simulation, Experimental Unit, and Artificial Neural Network Prediction vol.59, pp.51, 2020, https://doi.org/10.1021/acs.iecr.0c01750
  40. Development of a generalized scaling law for underwater explosions using a numerical and experimental parametric study vol.77, pp.3, 2003, https://doi.org/10.12989/sem.2021.77.3.305
  41. Attaining Optimum Passive Control in Liquid-Storage Tank by Using Multiple Vertical Baffles vol.26, pp.3, 2003, https://doi.org/10.1061/(asce)sc.1943-5576.0000586
  42. Dynamic crushing of a dedicated buffer during the high-speed vertical water entry process vol.236, pp.None, 2003, https://doi.org/10.1016/j.oceaneng.2021.109526