References
- Amsden, A.A. and Hirt, C.W. (1973), "YAQUI: An arbitrary Lagrangian-Eulerian computer program for fluid flow at all speeds", Los Alamos Scientific Laboratory, LA-5100.
- Benson, D.J. (1992), "Computational methods in Lagrangian and Eulerian hydrocodes", Comput. Methods Appl. Mech. Eng., 99, 235-394. https://doi.org/10.1016/0045-7825(92)90042-I
- Benson, D.J. (1992), "Momentum advection on a staggered mesh", J. of Computational Physics, 100(1), May 1992, 143-162. https://doi.org/10.1016/0021-9991(92)90316-Q
- Benson, D.J. (1997), "A mixture theory for contact in multi-material Eulerian formulations", Comput. Methods Appl. Mech. Eng. 140, 59-86. https://doi.org/10.1016/S0045-7825(96)01050-X
- Benson, David J. (1998), "Eulerian finite element methods for the micromechanics of heterogenous materials: Dynamics prioritization of material interfaces", Comput. Meth. Appl. Mech. Eng., 150, 343-360.
- Blevins, R. (1995), Formulas for Natural Frequency & Mode Shape, Frieger Publishing Corporation.
- Flanagan, D.P. and Belytschko, T. (1981), "A uniform strain hexahedron and quadrilateral and orthogonal hourglass control", Int. J. Numer. Meths, Eng., 17, 679-706. https://doi.org/10.1002/nme.1620170504
- Hallquist, J.O. (1998), "LS-DYNA theoretical manual", Livermore Software Technology Company.
- Hughes, T.J.R., Liu, W.K. and Zimmerman, T.K. (1981), "Lagrangian Eulerian finite element formulation for viscous flows", J. Comput. Methods Appl. Mech. Engrg., 21, 329-349.
- Lee, S.-Y., Cho, J.-R., Park, T.-H. and Lee, W.-Y. (2002), "Baffled fuel-storage container: Parametric study on transient dynamic characteristics", Struct. Eng. Mech., An Int. J., 13(6), 653-670. https://doi.org/10.12989/sem.2002.13.6.653
- Nakayama, T. and Mori, M. (1996), "An Eulerian Finite Element method for time-dependent free-surface problems in hydrodynamics", Int. J. Numer. Methods in Fluids, 22(3), 175-194. https://doi.org/10.1002/(SICI)1097-0363(19960215)22:3<175::AID-FLD352>3.0.CO;2-F
- Richtmyer, R.D. and Morton, K.W. (1967), Difference Equations for Initial-Value Problems, Interscience Publishers, New York.
- Souli, M. and Zolesio, J.P. (2001), "Arbitrary Lagrangian-Eulerian and free surface methods in fluid mechanics", Comput. Methods Appl. Mech. Eng., 191.
- Souli, M., Ouahsine, A. and Lewin, L. (2000), "ALE formulation for fluid-structure interaction problems", Comput. Methods Appl. Mech. Eng., 190, 659-675. https://doi.org/10.1016/S0045-7825(99)00432-6
- Summit Racing Equipment, Akron, Ohio 44309.
- Van Leer, B. (1977), "Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection", J. of Computational Physics, 23, 276-299. https://doi.org/10.1016/0021-9991(77)90095-X
- Wiegel, L.R., Oceanographical Engineering, Prentice hall Inc Publisher.
- Woodward, P.R. and Collela, P. (1982), "The numerical simulation of two-dimensional fluid flow with strong shocks", Lawrence Livermore National Laboratory, UCRL-86952.
- Young, D.L. (1982),"Time-dependent multi-material flow with large fluid distortion", Numerical Methods for Fluids Dynamics, Ed. Morton, K.W. and Baines, M.J., Academic Press, New-York.
Cited by
- Progressive damage modeling in laminate composites under slamming impact water for naval applications vol.167, 2017, https://doi.org/10.1016/j.compstruct.2017.02.004
- Numerical analysis of blast-induced wave propagation using FSI and ALEmulti-material formulations vol.36, pp.10-11, 2009, https://doi.org/10.1016/j.ijimpeng.2009.03.007
- High explosive simulation using multi-material formulations vol.26, pp.10, 2006, https://doi.org/10.1016/j.applthermaleng.2005.10.018
- Numerical simulation of underwater explosions using an ALE method. The pulsating bubble phenomena vol.41, 2012, https://doi.org/10.1016/j.oceaneng.2011.12.015
- FSI methods for seismic analysis of sloshing tank problems vol.11, pp.2, 2010, https://doi.org/10.1051/meca/2010025
- Water impact tests and simulations of a steel structure vol.3, pp.1, 2012, https://doi.org/10.1108/17579861211209966
- Comparisons of Multi Material ALE and Single Material ALE in LS-DYNA for Estimation of Acceleration Response of Free-fall Lifeboat vol.48, pp.6, 2011, https://doi.org/10.3744/SNAK.2011.48.6.552
- Conceptual evaluation of fluid–structure interaction effects coupled to a seismic event in an innovative liquid metal nuclear reactor vol.239, pp.11, 2009, https://doi.org/10.1016/j.nucengdes.2009.08.008
- Local water slamming impact on sandwich composite hulls vol.27, pp.4, 2011, https://doi.org/10.1016/j.jfluidstructs.2011.02.001
- Investigation on sloshing and vibration mitigation of water storage tank of AP1000 vol.90, 2016, https://doi.org/10.1016/j.anucene.2015.12.014
- Fluid–shell structure interaction analysis by coupled particle and finite element method vol.85, pp.11-14, 2007, https://doi.org/10.1016/j.compstruc.2007.01.019
- The Investigation of Launching Parameters on the Motion Pattern of Freefall Lifeboat Using FSI Analysis vol.14, 2015, https://doi.org/10.1016/j.proeps.2015.07.091
- Dynamic response of AP1000 water tank with internal ring baffles under earthquake loads vol.127, 2017, https://doi.org/10.1016/j.egypro.2017.08.107
- Transient Response of a Projectile in Gun Launch Simulation Using Lagrangian and Ale Methods vol.4, pp.2, 2010, https://doi.org/10.1260/1750-9548.4.2.151
- Sloshing in concrete cylindrical tanks subjected to earthquake vol.163, pp.4, 2010, https://doi.org/10.1680/eacm.2009.163.4.261
- Finite-Element Analysis of Fluid-Structure Interaction in a Blast-Resistant Window System vol.136, pp.3, 2010, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000100
- Numerical simulation and transonic wind-tunnel test for elastic thin-shell structure considering fluid–structure interaction vol.28, pp.1, 2015, https://doi.org/10.1016/j.cja.2014.12.027
- Experimental and numerical investigation on the dynamic response of sandwich composite panels under hydrodynamic slamming loads vol.178, 2017, https://doi.org/10.1016/j.compstruct.2017.07.014
- FSI effects and seismic performance evaluation of water storage tank of AP1000 subjected to earthquake loading vol.280, 2014, https://doi.org/10.1016/j.nucengdes.2014.08.024
- Meshless method for shallow water equations with free surface flow vol.217, pp.11, 2011, https://doi.org/10.1016/j.amc.2010.07.048
- Application of nonlinear fluid–structure interaction methods to seismic analysis of anchored and unanchored tanks vol.32, pp.2, 2010, https://doi.org/10.1016/j.engstruct.2009.10.004
- Violent Fluid-Structure Interaction simulations using a coupled SPH/FEM method vol.10, 2010, https://doi.org/10.1088/1757-899X/10/1/012041
- Delayed mesh relaxation for multi-material ALE formulation vol.46, 2014, https://doi.org/10.1016/j.ijheatfluidflow.2014.01.003
- Numerical Evaluation of Dynamic Response for Flexible Composite Structures under Slamming Impact for Naval Applications 2018, https://doi.org/10.1007/s10443-017-9646-0
- Deployment of a Neo-Hookean membrane: experimental and numerical analysis vol.7, pp.1, 2013, https://doi.org/10.1260/1750-9548.7.1.41
- Characterization of Polymeric Membranes Under Large Deformations Using Fluid-Structure Coupling vol.07, pp.05, 2015, https://doi.org/10.1142/S1758825115500684
- Euler–Lagrange coupling with damping effects: Application to slamming problems vol.195, pp.1-3, 2006, https://doi.org/10.1016/j.cma.2005.01.010
- Computational modeling of human head under blast in confined and open spaces: primary blast injury vol.30, pp.1, 2014, https://doi.org/10.1002/cnm.2590
- Finite Element Modeling of Hydraulic Excavator in Soil Cutting Process vol.145, pp.1662-7482, 2011, https://doi.org/10.4028/www.scientific.net/AMM.145.240
- A Coupling Method for Hydrodynamic Ram Analysis: Experimental and Numerical Investigation vol.136, pp.1, 2014, https://doi.org/10.1115/1.4025342
- Numerical Simulation of the Ice Resistance in Pack Ice Conditions pp.1793-6969, 2018, https://doi.org/10.1142/S021987621844005X
- Numerical Simulation on the Resistance Performance of Ice-Going Container Ship Under Brash Ice Conditions vol.32, pp.5, 2018, https://doi.org/10.1007/s13344-018-0057-2
- Experimental Validation of a Coupled Fluid-Multibody Dynamics Model for Tanker Trucks vol.1, pp.1, 2003, https://doi.org/10.4271/2008-01-0777
- Estimation of Acceleration Response of Freefall Lifeboat using FSI Analysis Technique of LS-DYNA Code vol.47, pp.5, 2003, https://doi.org/10.3744/snak.2010.47.5.681
- Comparison of experimental and numerical sloshing loads in partially filled tanks vol.6, pp.1, 2003, https://doi.org/10.1080/17445302.2010.522372
- Numerical Evaluation of Nonlinear Response of Broad Cylindrical Steel Tanks under Multidimensional Earthquake Motion vol.28, pp.1, 2012, https://doi.org/10.1193/1.3672996
- Study on the dependence with the filling level of the sloshing wave pattern in a rectangular tank vol.32, pp.1, 2020, https://doi.org/10.1063/1.5133420
- Assessment of breaking waves and liquid sloshing impact vol.100, pp.3, 2003, https://doi.org/10.1007/s11071-020-05605-7
- Comprehensive Study on Sloshing Impacts for an Offshore 3D Vessel via the Integration of Computational Fluid Dynamics Simulation, Experimental Unit, and Artificial Neural Network Prediction vol.59, pp.51, 2020, https://doi.org/10.1021/acs.iecr.0c01750
- Development of a generalized scaling law for underwater explosions using a numerical and experimental parametric study vol.77, pp.3, 2003, https://doi.org/10.12989/sem.2021.77.3.305
- Attaining Optimum Passive Control in Liquid-Storage Tank by Using Multiple Vertical Baffles vol.26, pp.3, 2003, https://doi.org/10.1061/(asce)sc.1943-5576.0000586
- Dynamic crushing of a dedicated buffer during the high-speed vertical water entry process vol.236, pp.None, 2003, https://doi.org/10.1016/j.oceaneng.2021.109526