References
- Bathe, K.J. (1996), Finite Element Procedures; 2nd edn, Prentice-Hall, USA.
- Belytschko, T. and Hughes, T.J.R. (1983), Computational Methods for Transient Analysis, Elsevier: USA.
- Bernal, D. (1991), "Locating events in step-by-step integration of Eqs. of motion", J. Struct. Eng., ASCE, 117(2),530-545. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:2(530)
- Bismarck-Nasr, M-N. and De Oliveira, A.M. (1991), "On enhancement of accuracy in direct integration dynamicresponse problems", Earthq. Eng. Struct. Dyn., 20(7), 699-703. https://doi.org/10.1002/eqe.4290200708
- Cardona, A. and Geradin, M. (1989), "Time integration of the Eqs. of motion in mechanism analysis", Comput.Struct., 33(3), 801-820. https://doi.org/10.1016/0045-7949(89)90255-1
- Choi, C-K. and Chung, H.J. (1996), "Adaptive time stepping for various direct time integration methods",Comput. Struct., 60(6), 923-944. https://doi.org/10.1016/0045-7949(95)00452-1
- Chopra, A.K. (1995), Dynamics of Structures: Theory and Application to Earthquake Engineering, Prentice-Hall,USA.
- Clough, R.W. and Penzien, J. (1993), Dynamics of Structures, 2nd edition, McGraw-Hill, USA.
- Farjoodi, J. and Soroushian, A. (2002), "Shortcomings in numerical dynamic analysis of nonlinear systems",Report No. 614/2/696, University of Tehran, Tehran, Iran. (In Persian)
- Farjoodi, J. and Soroushian, A. (2001), "Robust convergence for the dynamic analysis of MDOF elastoplasticsystems", Proc. of the SEMC2001 Conf., South-Africa, April.
- Farjoodi, J. and Soroushian, A. (2000), "More accuracy in step-by-step analysis of nonlinear dynamic systems",Proc. of '5 Int. Conf. on Civil Eng., Iran, May. (In Persian)
- Fung, T.C. (1997), "Third order time-step integration methods with controllable numerical dissipation", Commun.Numer. Methods Eng., 13(4), 307-315. https://doi.org/10.1002/(SICI)1099-0887(199704)13:4<307::AID-CNM64>3.0.CO;2-2
- Golley, B.W. (1998), "A weighted residual development of a time-stepping algorithm for structural dynamicsusing two general weight functions", Int. J. Numer. Methods Eng., 42(1), 93-103. https://doi.org/10.1002/(SICI)1097-0207(19980515)42:1<93::AID-NME353>3.0.CO;2-W
- Gupta, A.K. (1992), Response Spectrum Method: In Seismic Analysis and Design of Structures, CRC, USA.
- Henrici, P. (1962), Discrete Variable Methods in Ordinary Differential Eqs., John Wiley and Sons, USA.
- Hughes, T.J.R. (1987), The Finite Element Method: Linear Static and Dynamic Finite Element Analysis,Prentice-Hall, USA.
- Jacob, B.P. and Ebecken, N.F.F. (1994), "An optimized implementation of the Newmark/Newton-RaphsonAlgorithm for the time integration of nonlinear problems", Commun. Numer. Methods Eng., 10(12), 983-992. https://doi.org/10.1002/cnm.1640101204
- Kardestuncer, H. (1987), Finite Element Handbook, McGraw-Hill, USA.
- Kim, S.J., Cho, J.Y. and Kim, W.D. (1999), "From the trapezoidal rule to higher order accurate andunconditionally stable time-integration methods for structural dynamic", Comput. Methods Appl. Mech. Eng.,149(1), 73-88. https://doi.org/10.1016/S0045-7825(97)00061-3
- Kuhl, D. and Crisfield, M.A. (1999), "Energy conserving and decaying algorithms in nonlinear structuraldynamics", Int. J. Numer. Methods Eng., 45(5), 569-599. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<569::AID-NME595>3.0.CO;2-A
- Lambert, J.D. (1983), Computational Methods in Ordinary Differential Eqs., John Wiley and Sons, UK.
- Low, K.H. (1991), "Convergence of the numerical methods for problems of structural dynamics", J. Sound Vib.,150(2), 342-349. https://doi.org/10.1016/0022-460X(91)90628-W
- Mahin, S.A. and Lin, J. (1983), "Construction of inelastic response spectra for single degree-of-freedomsystems", UCB/EERC Report No. 83/17, University of California, Berkeley.
- Monro, D.M. (1985), Fortran 77, Edward Arnold, UK.
- Nau, J.M. (1993), "Computation of inelastic spectra", J. Eng. Mech., ASCE, 109(1), 279-288.
- Newmark, N.M. (1959), "A method for computation for structural dynamics", J. Eng. Mech., ASCE, 85(3), 67-94.
- Penry, S.N. and Wood, W.L. (1985), "Comparison of some single-step methods for the numerical solution of thestructural dynamic Eqs.", Int. J. Numer. Methods Eng., 21(11), 1941-1955. https://doi.org/10.1002/nme.1620211102
- Ralston, A. and Rabinowitz, P. (1978), A First Course in Numerical Analysis; 2nd edn, McGraw-Hill, Japan.
- Rashidi, S. and Saadeghvaziri, M.A. (1997), "Seismic modeling of multi-span simply supported bridges usingadina", Comput. Struct., 64(5/6), 1025-1039. https://doi.org/10.1016/S0045-7949(97)00016-3
- Ruge, P.A. (1999), "A priori local error estimation with adaptive time-stepping", Commun. Numer. MethodsEng., 15(7), 479-491. https://doi.org/10.1002/(SICI)1099-0887(199907)15:7<479::AID-CNM262>3.0.CO;2-7
- Schueller, G.I. and Pradlwarter, H.J. (1999), "On the stochastic response of nonlinear FE models", Arch. Appl.Mech., 69(9-10), 765-784. https://doi.org/10.1007/s004190050255
- Wood, W.L. (1990), Practical Time-Stepping Schemes, Oxford, USA.
- Xie, Y.M. (1996), "An assessment of time integration schemes for nonlinear dynamic Eqs.", J. Sound Vib.,192(1), 321-331. https://doi.org/10.1006/jsvi.1996.0190
- Xie, Y.M. and Steven, G.P. (1994), "Instability, chaos, and growth and decay of energy of time-stepping schemesfor nonlinear dynamic Eqs.", Commun. Numer. Methods Eng., 10(5), 393-401. https://doi.org/10.1002/cnm.1640100505
- Zeng, L.F., Wiberg, N-E., Li, X.D. and Xie, Y.M. (1992), "A posteriori local error estimation and adaptive timesteppingfor Newmark integration in dynamic analysis", Earthq. Eng. Struct. Dyn., 21(7), 555-571. https://doi.org/10.1002/eqe.4290210701
- Zienkiewicz, O.C. and Xie, Y.M. (1991), "Simple error estimator and adaptive time stepping procedure fordynamic analysis", Earthq. Eng. Struct. Dyn., 20(9), 871-887. https://doi.org/10.1002/eqe.4290200907
- Zienkiewicz, O.C., Borroomand, B. and Zhu, J.Z. (1999), "Recovery procedures in error estimation andadaptivity in linear problems", Comput. Methods Appl. Mech. Eng., 176(1-4), 111-125. https://doi.org/10.1016/S0045-7825(98)00332-6
Cited by
- On practical integration of semi-discretized nonlinear equations of motion. Part 1: reasons for probable instability and improper convergence vol.284, pp.3-5, 2005, https://doi.org/10.1016/j.jsv.2004.07.008
- A technique for time integration analysis with steps larger than the excitation steps vol.24, pp.12, 2008, https://doi.org/10.1002/cnm.1097
- Asymptotic upper bounds for the errors of Richardson extrapolation with practical application in approximate computations vol.80, pp.5, 2009, https://doi.org/10.1002/nme.2642
- Practical Integration of Semidiscretized Nonlinear Equations of Motion: Proper Convergence for Systems with Piecewise Linear Behavior vol.139, pp.2, 2013, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000434
- A unified starting procedure for the Houbolt method vol.24, pp.1, 2008, https://doi.org/10.1002/cnm.949
- Selection of time step for pseudodynamic testing vol.10, pp.3, 2011, https://doi.org/10.1007/s11803-011-0079-8
- Efficient Static Analysis of Assemblies of Beam-Columns Subjected to Continuous Loadings Available as Digitized Records vol.4, pp.None, 2003, https://doi.org/10.3389/fbuil.2018.00083