참고문헌
- Argyris, J.H. and Symeonidis, Sp. (1981), "Nonlinear finite element analysis of elastic systems under nonconservativeloading-natural formulation. Part. I Quasistatic problems", Comput. Meth. Appl. Mech. Eng., 26,75-123. https://doi.org/10.1016/0045-7825(81)90131-6
- Beck, M. (1952), "Die Knicklast des einseitig eingespannten, tangential gedruckten Stabes", Z. Angew. Math.Phys., 3, 225-228. https://doi.org/10.1007/BF02008828
- Bolotin, V.V. (1965), Non-conservative Problems of the Theory of Elastic Stability, Pergamon Press, London.
- De Rosa, M. and Franciosi, C. (1990), "The influence of an intermediate support on the stability behaviour ofcantilever beams subjected to follower forces", J. Sound Vib., 137(1), 107-115. https://doi.org/10.1016/0022-460X(90)90719-G
- Glabisz, W. (1999), "Vibration and stability of a beam with elastic supports and concentrated masses underconservative and non-conservative forces", Comput. Struct., 70, 305-313. https://doi.org/10.1016/S0045-7949(98)00181-3
- Kounadis, A.N. (1983), "The existence of regions of divergence instability for non-conservative systems underfollower forces", Int. J. Solids Struct., 19(8), 725-733. https://doi.org/10.1016/0020-7683(83)90067-7
- Lee, H.P. (1995), "Dynamic stability of a rod with an intermediate spring support subject to sub-tangentialfollower forces", Comput. Meth. Appl. Mech. Eng., 125, 141-150. https://doi.org/10.1016/0045-7825(95)00797-5
- Leipholz, H. (1980), Stability of Elastic Systems, Sijthoff-Noordhoff, The Netherlands.
- Leipholz, H. and Bhalla, K. (1977), "On the solution of the stability problems of elastic rods subjected totriangularly distributed tangential follower forces", Ingenieur-Archiv, 46, 115-124. https://doi.org/10.1007/BF00538745
- Liebowitz, H., Vanderveldt, H. and Harris, D.H. (1967), "Carrying capacity of notched column", Int. J. SolidsStruct., 3, 489-500. https://doi.org/10.1016/0020-7683(67)90003-0
- Marzani, A. and Viola, E. (2002), "Influenza dell'incastro elasticamente cedevole sulla instabilità dinamica perflutter e per divergenza di una colonna", Nota tecnica n.61 DISTART, University of Bologna, Italy.
- Mote, Jr. (1971), "Non-conservative stability by finite elements", J. Eng. Mech. Div., EM3, 645-656.
- Ryu, B.J., Sugiyama, Y., Yim, K.B. and Lee, G.S. (2000), "Dynamic stability of an elastically restrained columnsubjected to triangularly distributed sub-tangential force", Comput. Struct., 76, 611-619. https://doi.org/10.1016/S0045-7949(99)00132-7
- Sugiyama, Y. and Kawagoe, H. (1975), "Vibration and stability of elastic columns under the combined action ofuniformly distributed vertical and tangential forces", J. Sound Vib., 38(4), 341-355. https://doi.org/10.1016/S0022-460X(75)80051-4
- Sugiyama, Y. and Mladenov, K.A. (1983), "Vibration and stability of elastic columns subjected to triangularly distributed sub-tangential forces", J. Sound Vib., 88(4), 447-457. https://doi.org/10.1016/0022-460X(83)90648-X
- Viola, E., Nobile, L. and Marzani, A. (2002), "Boundary conditions effect on the dynamic stability of beamssubjected to triangularly distributed sub-tangential forces", Proc. of the Second Int. Conf. on Advantages inStructural Engineering and Mechanics (ASEM'02), 21-23 August 2002, Busan, Korea.
- Ziegler, H. (1977), Principles of Structural Stability, Birkhauser, Basel/Stuttgart.
피인용 문헌
- Nonconservative stability problems via generalized differential quadrature method vol.315, pp.1-2, 2008, https://doi.org/10.1016/j.jsv.2008.01.056
- Stability behavior and free vibration of tapered columns with elastic end restraints using the DQM method vol.4, pp.3, 2013, https://doi.org/10.1016/j.asej.2012.10.005
- Divergence and Flutter Instability of Damped Laminated Beams Subjected to a Triangular Distribution of Nonconservative Forces vol.14, pp.6, 2011, https://doi.org/10.1260/1369-4332.14.6.1075
- STABILITY OF DAMPED COLUMNS ON A WINKLER FOUNDATION UNDER SUB-TANGENTIAL FOLLOWER FORCES vol.13, pp.02, 2013, https://doi.org/10.1142/S021945541350020X
- Dynamic stability of shear-flexible beck’s columns based on Engesser’s and Haringx’s buckling theories vol.86, pp.21-22, 2008, https://doi.org/10.1016/j.compstruc.2008.04.012
- Interaction effect of cracks on flutter and divergence instabilities of cracked beams under subtangential forces vol.151, 2016, https://doi.org/10.1016/j.engfracmech.2015.11.010
- Stability Maps of a Cracked Timoshenko Beam Resting on Elastic Soils under Sub-Tangential Forces vol.385-387, pp.1662-9795, 2008, https://doi.org/10.4028/www.scientific.net/KEM.385-387.465