References
- Bathe, K.J. and Wilson, E.L. (1976), Numerical Methods in Finite Element Analysis, Prentice-Hall, Inc.,Englewood Cliffs, N. J.
- De Rosa, M.A. and Auciello, N.M. (1996), "Free vibrations of tapered beams with flexible ends", Comput.Struct., 60(2), 197-202. https://doi.org/10.1016/0045-7949(95)00397-5
- Faires, J.D. and Burden, R.L. (1993), Numerical Methods, PWS Publishing Company, Boston, USA.
- Gorman, Daniel I. (1975), Free Vibration Analysis of Beams and Shafts, John Wiley & Sons, Inc.
- Gurgoze, M. (1984), "A note on the vibrations of restrained beam and rods with point masses", J. Sound Vib.,96, 461-468. https://doi.org/10.1016/0022-460X(84)90633-3
- Gurgoze, M. (1998), "On the alternative formulations of the frequency equations of a Bernoulli-Euler beam towhich several spring-mass systems are attached inspan", J. Sound Vib., 217(3), 585-595 https://doi.org/10.1006/jsvi.1998.1796
- Hamdan, M.N. and Jubran, B.A. (1991) "Free and forced vibrations of a restrained uniform beam carrying anintermediate lumped mass and a rotary inertia", J. Sound Vib., 150(2), 203-216. https://doi.org/10.1016/0022-460X(91)90616-R
- Karman, Theodore V. and Biot, Maurice A. (1940), Mathematical Methods in Engineering, New York: McGraw-Hill.
- Laura, P.A.A., Maurizi, M.J. and Pombo, J.L. (1975), "A note on the dynamic analysis of an elasticallyrestrained-free beam with a mass at the free end", J. Sound Vib., 41, 397-405. https://doi.org/10.1016/S0022-460X(75)80104-0
- Laura, P.A.A., Susemihl, E.A., Pombo, J.L., Luisoni, L.E. and Gelos, R. (1977), "On the dynamic behavior ofstructural elements carrying elastically mounted concentrated masses", Applied Acoustic, 10, 121-145. https://doi.org/10.1016/0003-682X(77)90021-4
- Laura, P.A.A., Filipich, C.P. and Cortinez, V.H. (1987), "Vibration of beams and plates carrying concentratedmasses", J. Sound Vib., 112, 177-182. https://doi.org/10.1016/S0022-460X(87)80102-5
- Lee, T.W. (1976), "Transverse vibrations of a tapered beam carrying a concentrated mass", J. Appl. Mech.,Transactions of ASME, 43(2), 366-367. https://doi.org/10.1115/1.3423846
- Li, Q.S. (2002), "Free vibration analysis of non-uniform beams with an arbitrary number of cracks andconcentrated masses", J. Sound Vib., 252(3), 509-525. https://doi.org/10.1006/jsvi.2001.4034
- Qiao, H., LiS Q.S. and Li, G.Q. (2002), "Vibratory characteristics of flexural non-uniform Euler-Bernoulli beamscarrying an arbitrary number of spring-mass systems", Int. J. Mech. Sci., 44, 725-743. https://doi.org/10.1016/S0020-7403(02)00007-3
- Rossi, R.E., Laura, P.A.A., Avalos, D.R. and Larrondo, H. (1993), "Free vibration of Timoshenko beamscarrying elastically mounted", J. Sound Vib., 165(2), 209-223. https://doi.org/10.1006/jsvi.1993.1254
- Sankaran, G.V., Raju, K. Kanaka and Rao, G. Venkatesware (1975), "Vibrations frequencies of a tapered beamwith one end and spring-hinged and carrying a mass at the other free end", J. Appl. Mech., Transactions ofASME, 42(3), 740-741. https://doi.org/10.1115/1.3423679
- Wu, J.S. and Lin, T.L. (1990), "Free vibration analysis of a uniform cantilever beam with point masses by ananalytical-and-numerical-combined method", J. Sound Vib., 136, 201-213. https://doi.org/10.1016/0022-460X(90)90851-P
- Wu, J.S. and Chou, H.M. (1998), "Free vibration analysis of a cantilever beam carrying any number ofelastically mounted point masses with the analytical-and-numerical-combined method", J. Sound Vib., 213(2),317-332. https://doi.org/10.1006/jsvi.1997.1501
- Wu, J.S. and Chen, D.W. (2001), "Free vibration analysis of a Timoshenko beam carrying multiple spring-masssystems by using the numerical assembly technique", Int. J. Num. Meth. Eng., 50, 1039-1058. https://doi.org/10.1002/1097-0207(20010220)50:5<1039::AID-NME60>3.0.CO;2-D
- Wu, J.S. and Chou, H.M. (1999), "A new approach for determining the natural frequencies and mode shapes ofa uniform beam carrying any number of sprung masses", J. Sound Vib., 220(3), 451-468. https://doi.org/10.1006/jsvi.1998.1958
Cited by
- Differential transform method and numerical assembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and rotary inertias vol.53, pp.3, 2015, https://doi.org/10.12989/sem.2015.53.3.537
- Dynamic analysis of a multi-span uniform beam carrying a number of various concentrated elements vol.309, pp.1-2, 2008, https://doi.org/10.1016/j.jsv.2007.07.015
- On the natural frequencies and mode shapes of a multiple-step beam carrying a number of intermediate lumped masses and rotary inertias vol.22, pp.6, 2006, https://doi.org/10.12989/sem.2006.22.6.701
- On the natural frequencies and mode shapes of a multi-span and multi-step beam carrying a number of concentrated elements vol.29, pp.5, 2008, https://doi.org/10.12989/sem.2008.29.5.531
- A new functional perturbation method for linear non-homogeneous materials vol.42, pp.5-6, 2005, https://doi.org/10.1016/j.ijsolstr.2004.08.010
- Out-of-Plane Free Vibration Analysis of a Horizontally Circular Curved Beam Carrying Arbitrary Sets of Concentrated Elements vol.137, pp.2, 2011, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000290
- Natural Vibration Analysis of High-Speed Railway Slab Tracks under Rail Longitudinal Force vol.706-708, pp.1662-8985, 2013, https://doi.org/10.4028/www.scientific.net/AMR.706-708.1443