References
- Addey, R.A. and Brebbia, C.A. (1973), "Efficient method for solution of viscoelastic problem", J. Eng. Mech. Div. ASCE, 99, 1119-1127.
- Akoz, A.Y. and , Kadioglu, F.. (1996), "The mixed finite element solutions of circular beam on elastic foundation", Comput. Struct., 60(4), 643-657. https://doi.org/10.1016/0045-7949(95)00418-1
- Akoz, A.Y. and , Kadioglu, F. (1999), "The mixed finite element method for the quasi-static and dynamic analysis of viscoelastic Timoshenko beams", Int. J. Numer. Methods Eng., 44, 1909-1932. https://doi.org/10.1002/(SICI)1097-0207(19990430)44:12<1909::AID-NME573>3.0.CO;2-P
- Aköz, A.Y., Omurtag, M.H. and , Dogruoglu, A. (1991), "The mixed finite element formulation for threedimensional bars", Int. J. Solids Structures, 28(2), 225-234. https://doi.org/10.1016/0020-7683(91)90207-V
- Aral, M.M. and Gulcat, U. (1977), "A finite element Laplace transform solution technique for wave equation", Int. J. Numer. Methods Eng., 11, 1719-1732. https://doi.org/10.1002/nme.1620111107
- Chen, T. (1995), "The hybrid Laplace transform/finite element method applied to the quasi-static and dynamic analysis of viscoelastic Timoshenko beams", Int. J. Numer. Methods Eng., 38, 509-522. https://doi.org/10.1002/nme.1620380310
- Christensen, R.M. (1982), Theory of Viscoelasticity, 2nd ed., Academic Press, New York.
- Dubner, H. and Abate, J. (1968), "Numerical inversion of Laplace transforms by relating them to finite Fourier cosine transform", Journal of the Association for Computing Machinery, 15(1), 115-123. https://doi.org/10.1145/321439.321446
- Durbin, F. (1974), "Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate's method", The Computer Journal, 17(4), 371-376 https://doi.org/10.1093/comjnl/17.4.371
- Findley, W.N., Lai, J.S. and Onaran, K. (1976), Creep and Relaxation of Nonlinear Visco-elastic Materials, North-Holland, New York.
- Flugge, W. (1975), Viscoelasticity, 2nd ed., Springer, Berlin, Heidelberg.
- Hetenyi, M. (1946), Beams on Elastic Foundation, The University of Michigan Press, Ann Arbor, Michigan.
- Johnson, A.R., Tessler, A. and Dambach, M. (1997), "Dynamics of thick viscoelastic beams", Journal of Engineering Materials and Technology, 119, July, 273-278. https://doi.org/10.1115/1.2812256
- Kadioglu, F. (1999), "Quasi-static and dynamic analysis of viscoelastic beams", Ph.D. thesis (in Turkish), Department of Civil Engineering, Istanbul Technical University.
- Krylov, V.I. and Skoblya, N.S. (1969), Handbook of Numerical Inversion of Laplace Transforms, Jeruselam by ISST Press, Wiener Bindery Ltd.
- Miranda, C.K. and Nair, K. (1966), "Finite beams on elastic foundations", J. Struct. Div., ASCE, 92, 131-142
- Narayanan, G.V. and Beskos, D.E. (1982), "Numerical operational methods for time-dependent linear problems", Int. J. Numer. Methods Eng., 18, 1829-1854. https://doi.org/10.1002/nme.1620181207
- Oden, J. and Reddy, J.N. (1976), Variational Methods in Theoretical Mechanics, Springer, Berlin.
- Rabbatnow, Yu. N. (1980), Element of Hereditary Solid Mechanics, Mir Publishers-Moscow.
- Reddy, J.N. (1986), Applied Functional Analysis and Variational Method in Engineering, McGraw-Hill.
- Schapery, R.A. (1962), "Approximate methods of transform inversion for viscoelastic stress analysis", Proc. the Fourth U.S. National Congress of Applied Mechanics, 2, Pergamon Press, Oxford, London, New York, Paris, June, 18-21.
- Ting, B.Y. and Mockry, E.F. (1983), "Beam on elastic foundation finite element", J. Appl. Mec., ASCE, 109(6), 1390-1402. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:6(1390)
- Wang, C.M., Yang, T.Q. and Lam, K.Y. (1997), "Viscoelastic Timoshenko beam solutions from Euler-Bernoulli solutions", July, 746-748.
- White, J.L. (1986), "Finite element in linear viscoelasticity", Proc. 2nd Conf. on Matrix Method in Structural Mechanics, AFFDL-TR-68-150, 489-516.
Cited by
- Viscoelastic Behavior of Shear-Deformable Plates vol.09, pp.06, 2017, https://doi.org/10.1142/S1758825117500855
- Dynamic analysis of linear viscoelastic cylindrical and conical helicoidal rods using the mixed FEM vol.333, pp.16, 2014, https://doi.org/10.1016/j.jsv.2014.03.017
- Quasi-static and dynamic analysis of viscoelastic plates vol.19, pp.4, 2015, https://doi.org/10.1007/s11043-015-9274-8
- Viscoelastic Plate Analysis Based on Gâteaux Differential vol.43, 2016, https://doi.org/10.1051/matecconf/20164304004
- Four-Parameter Viscoelastic Model for the Plates of Uniformly Varying Cross-Section vol.382, 2018, https://doi.org/10.4028/www.scientific.net/DDF.382.196
- Free Vibration of Laminated Composite Curved Beams using Mixed Finite Element Formulation vol.16, pp.4, 2003, https://doi.org/10.1515/secm.2009.16.4.247
- Free vibration analysis of angle-ply laminate composite beams by mixed finite element formulation using the Gâteaux differential vol.21, pp.2, 2014, https://doi.org/10.1515/secm-2013-0043
- Free vibration analysis of angle-ply laminate composite beams by mixed finite element formulation using the Gâteaux differential vol.21, pp.2, 2014, https://doi.org/10.1515/secm-2013-0043
- Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM vol.75, pp.5, 2020, https://doi.org/10.12989/sem.2020.75.5.633