References
- Altan, B.S., Evensen, H. and Aifantis, E.C. (1996), "Longitudinal vibrations of a beam: a gradient elasticity approach", Mech. Res. Comm., 23, 35-40. https://doi.org/10.1016/0093-6413(95)00074-7
- Beskos, D.E. and Michael, A.Y. (1984), "Solution of plane transient elastodynamic problems by finite elements and Laplace transform", Comp. Struct., 18, 695-701. https://doi.org/10.1016/0045-7949(84)90015-4
- Chang, C.S. and Gao, J. (1997), "Wave propagation in granular rod using high-gradient theory", J. Engng. Mech. ASCE, 123, 52-59. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:1(52)
- Durbin, F. (1974), "Numerical inversion of Laplace transform: an efficient improvement to Dubner and Abate's method", Computer J., 17, 371-376. https://doi.org/10.1093/comjnl/17.4.371
- Exadaktylos, G.E. and Vardoulakis, I. (2001), "Microstructure in linear elasticity and scale effects: a reconsideration of basic rock mechanics and rock fracture mechanics", Tectonophysics, 335, 81-109. https://doi.org/10.1016/S0040-1951(01)00047-6
- Exadaktylos, G., Vardoulakis, I. and Aifantis, E.C. (1996), "Cracks in gradient elastic bodies with surface energy", Int. J. Fracture, 79, 107-119. https://doi.org/10.1007/BF00032929
- Georgiadis, H.G. and Vardoulakis, I. (1998), "Antiplane shear Lamb's problem treated by gradient elasticity with surface energy", Wave Motion, 28, 353-366. https://doi.org/10.1016/S0165-2125(98)00015-8
- Kitahara, M. (1985), Boundary Integral Equation Methods in Eigenvalue Problems of Elastodynamics and Thin Plates, Elsevier, Amsterdam.
- Lakes, R.S. (1983), "Size effects and micromechanics of a porous solid", J. Mater. Sci., 18, 2572-2580. https://doi.org/10.1007/BF00547573
- Lakes, R.S. (1986), "Experimental microelasticity of two porous solids", Int. J. Solids Struct., 22, 55-63. https://doi.org/10.1016/0020-7683(86)90103-4
- Lakes, R. (1995), "Experimental methods for study of Cosserat elastic solids and other generalized elastic continua", in Continuum Models for Materials with Microstructure, (Muhlhaus, H.B., ed.), John Wiley & Sons, Chichester, 1-25.
- Lanczos, C. (1970), The Variational Principles of Mechanics, University of Toronto Press, Toronto.
- Narayanan, G.V. and Beskos, D.E. (1982), "Numerical operational methods for time-dependent linear problems", Int. J. Num. Meth. Engng., 18, 1829-1854. https://doi.org/10.1002/nme.1620181207
- Papargyri-Beskou, S., Tsepoura, K.G., Polyzos, D. and Beskos, D.E. (2003), "Bending and stability analysis of gradient elastic beams", Int. J. Solids Struct., 40, 385-400. https://doi.org/10.1016/S0020-7683(02)00522-X
- Ru, C.Q. and Aifantis, E.C. (1993), "A simple approach to solve boundary value problems in gradient elasticity", Acta Mechanica, 101, 59-68. https://doi.org/10.1007/BF01175597
- Tiersten, H.F. and Bleustein, J.L. (1974), "Generalized elastic continua", in R.D. Mindlin and Applied Mechanics, (Herrmann, G., ed.), Pergamon Press, New York, 67-103.
- Tsagrakis, I.A. (2001), "The role of gradients in elasticity and plasticity: analytical and numerical applications", Doctoral Dissertation, Aristotle University of Thessaloniki, Thessaloniki, Greece (in Greek).
- Tsepoura, K.G., Papargyri-Beskou, S., Polyzos, D. and Beskos, D.E. (2002), "Static and dynamic analysis of gradient elastic bars in tension", Arch. Appl. Mech., 72, 483-497. https://doi.org/10.1007/s00419-002-0231-z
- Vardoulakis, I., Exadaktylos, G. and Kourkoulis, S.K. (1998), "Bending of marble with intrinsic length scales: a gradient theory with surface energy and size effects", J. de Physique IV8, 399-406.
- Vardoulakis, I. and Sulem, J. (1995), Bifurcation Analysis in Geomechanics, Blackie/Chapman and Hall, London.
Cited by
- Variational formulation of gradient or/and nonlocal higher-order shear elasticity beams vol.105, 2013, https://doi.org/10.1016/j.compstruct.2013.05.026
- Closed-form frequency solutions for simplified strain gradient beams with higher-order inertia vol.56, 2016, https://doi.org/10.1016/j.euromechsol.2015.10.005
- Wave dispersion studies in granular media by analytical and analytical–numerical methods vol.29, pp.5, 2009, https://doi.org/10.1016/j.soildyn.2008.10.003
- Finite element static and stability analysis of gradient elastic beam structures vol.226, pp.3, 2015, https://doi.org/10.1007/s00707-014-1216-z
- Strain and velocity gradient theory for higher-order shear deformable beams vol.85, pp.7, 2015, https://doi.org/10.1007/s00419-015-0997-4
- Wave dispersion in gradient elastic solids and structures: A unified treatment vol.46, pp.21, 2009, https://doi.org/10.1016/j.ijsolstr.2009.05.002
- Size-dependent generalized thermoelasticity model for Timoshenko microbeams vol.225, pp.7, 2014, https://doi.org/10.1007/s00707-013-1027-7
- Boundary element analysis of mode I and mixed mode (I and II) crack problems of 2-D gradient elasticity vol.196, pp.49-52, 2007, https://doi.org/10.1016/j.cma.2007.07.006
- Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory vol.133, 2015, https://doi.org/10.1016/j.compstruct.2015.08.014
- Structural modelling of nanorods and nanobeams using doublet mechanics theory 2018, https://doi.org/10.1007/s10999-017-9371-8
- The size-dependent natural frequency of Bernoulli–Euler micro-beams vol.46, pp.5, 2008, https://doi.org/10.1016/j.ijengsci.2007.10.002
- Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory vol.112, 2016, https://doi.org/10.1016/j.commatsci.2015.10.044
- A new Bernoulli–Euler beam model based on a simplified strain gradient elasticity theory and its applications vol.111, 2014, https://doi.org/10.1016/j.compstruct.2014.01.019
- Transient dynamic analysis of 3-D gradient elastic solids by BEM vol.83, pp.10-11, 2005, https://doi.org/10.1016/j.compstruc.2004.11.001
- Stability analysis of gradient elastic circular cylindrical thin shells vol.47, pp.11-12, 2009, https://doi.org/10.1016/j.ijengsci.2009.09.009
- Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory vol.165, 2017, https://doi.org/10.1016/j.compstruct.2017.01.032
- A spectral finite element for axial-flexural-shear coupled wave propagation analysis in lengthwise graded beam vol.36, pp.1, 2005, https://doi.org/10.1007/s00466-004-0637-2
- Torsional vibrations of a column of fine-grained material: A gradient elastic approach vol.76, 2015, https://doi.org/10.1016/j.jmps.2014.11.012
- Wave propagation in and free vibrations of gradient elastic circular cylindrical shells vol.223, pp.8, 2012, https://doi.org/10.1007/s00707-012-0643-y
- A micro scale Timoshenko beam model based on strain gradient elasticity theory vol.29, pp.4, 2010, https://doi.org/10.1016/j.euromechsol.2009.12.005
- Axial dynamics of a nanorod embedded in an elastic medium using doublet mechanics vol.160, 2017, https://doi.org/10.1016/j.compstruct.2016.11.023
- Static and dynamic analysis of micro beams based on strain gradient elasticity theory vol.47, pp.4, 2009, https://doi.org/10.1016/j.ijengsci.2008.08.008
- Transient dynamic analysis of a fluid-saturated porous gradient elastic column vol.222, pp.3-4, 2011, https://doi.org/10.1007/s00707-011-0539-2
- Derivation of Mindlin’s first and second strain gradient elastic theory via simple lattice and continuum models vol.49, pp.3-4, 2012, https://doi.org/10.1016/j.ijsolstr.2011.10.021
- Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory vol.331, pp.1, 2012, https://doi.org/10.1016/j.jsv.2011.08.020
- Wave Propagation in Flexoelectric Microstructured Solids vol.130, pp.2, 2018, https://doi.org/10.1007/s10659-017-9636-3
- Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates vol.78, pp.8, 2008, https://doi.org/10.1007/s00419-007-0166-5
- Longitudinal vibration analysis for microbars based on strain gradient elasticity theory vol.20, pp.4, 2014, https://doi.org/10.1177/1077546312463752
- Out-of-Plane Buckling of Microstructured Beams: Gradient Elasticity Approach vol.139, pp.8, 2013, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000543
- Wave propagation in 3-D poroelastic media including gradient effects vol.82, pp.10-11, 2012, https://doi.org/10.1007/s00419-012-0675-8
- Effect of Temperature Field on Flexural Wave Characteristics of a Bar Resembling Welding to Rigid Body vol.83-86, pp.1662-8985, 2009, https://doi.org/10.4028/www.scientific.net/AMR.83-86.1212
- Finite element free and forced vibration analysis of gradient elastic beam structures pp.1619-6937, 2018, https://doi.org/10.1007/s00707-018-2261-9
- Measuring material length parameter with a new solution of microbend beam in couple stress elasto-plasticity vol.33, pp.2, 2003, https://doi.org/10.12989/sem.2009.33.2.257
- Dynamic analysis of a gradient elastic polymeric fiber vol.26, pp.1, 2003, https://doi.org/10.1016/s0894-9166(13)60002-6
- A semianalytical approach for determining the nonclassical mechanical properties of materials vol.26, pp.5, 2003, https://doi.org/10.1515/jmbm-2017-0025
- A semianalytical approach for determining the nonclassical mechanical properties of materials vol.26, pp.5, 2003, https://doi.org/10.1515/jmbm-2017-0025
- Differential Quadrature Element Method for Free Vibration of Strain Gradient Beams with Elastic Boundary Conditions vol.7, pp.6, 2019, https://doi.org/10.1007/s42417-019-00151-y
- Small-scale effects on wave propagation in planar micro-lattices vol.494, pp.None, 2021, https://doi.org/10.1016/j.jsv.2020.115894
- Nonlocal integral static problems of nanobeams resting on an elastic foundation vol.89, pp.None, 2021, https://doi.org/10.1016/j.euromechsol.2021.104295
- Nonlinear dynamic response of open and breathing cracked functionally graded beam under single and multi-frequency excitation vol.242, pp.None, 2003, https://doi.org/10.1016/j.engstruct.2021.112437