DOI QR코드

DOI QR Code

Dynamic analysis of gradient elastic flexural beams

  • Papargyri-Beskou, S. (General Department, School of Technology, Aristotle University of Thessaloniki) ;
  • Polyzos, D. (Department of Mechanical and Aeronautical Engineering, University of Patras) ;
  • Beskos, D.E. (Department of Civil Engineering, University of Patras)
  • Received : 2002.07.11
  • Accepted : 2003.03.27
  • Published : 2003.06.25

Abstract

Gradient elastic flexural beams are dynamically analysed by analytic means. The governing equation of flexural beam motion is obtained by combining the Bernoulli-Euler beam theory and the simple gradient elasticity theory due to Aifantis. All possible boundary conditions (classical and non-classical or gradient type) are obtained with the aid of a variational statement. A wave propagation analysis reveals the existence of wave dispersion in gradient elastic beams. Free vibrations of gradient elastic beams are analysed and natural frequencies and modal shapes are obtained. Forced vibrations of these beams are also analysed with the aid of the Laplace transform with respect to time and their response to loads with any time variation is obtained. Numerical examples are presented for both free and forced vibrations of a simply supported and a cantilever beam, respectively, in order to assess the gradient effect on the natural frequencies, modal shapes and beam response.

Keywords

References

  1. Altan, B.S., Evensen, H. and Aifantis, E.C. (1996), "Longitudinal vibrations of a beam: a gradient elasticity approach", Mech. Res. Comm., 23, 35-40. https://doi.org/10.1016/0093-6413(95)00074-7
  2. Beskos, D.E. and Michael, A.Y. (1984), "Solution of plane transient elastodynamic problems by finite elements and Laplace transform", Comp. Struct., 18, 695-701. https://doi.org/10.1016/0045-7949(84)90015-4
  3. Chang, C.S. and Gao, J. (1997), "Wave propagation in granular rod using high-gradient theory", J. Engng. Mech. ASCE, 123, 52-59. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:1(52)
  4. Durbin, F. (1974), "Numerical inversion of Laplace transform: an efficient improvement to Dubner and Abate's method", Computer J., 17, 371-376. https://doi.org/10.1093/comjnl/17.4.371
  5. Exadaktylos, G.E. and Vardoulakis, I. (2001), "Microstructure in linear elasticity and scale effects: a reconsideration of basic rock mechanics and rock fracture mechanics", Tectonophysics, 335, 81-109. https://doi.org/10.1016/S0040-1951(01)00047-6
  6. Exadaktylos, G., Vardoulakis, I. and Aifantis, E.C. (1996), "Cracks in gradient elastic bodies with surface energy", Int. J. Fracture, 79, 107-119. https://doi.org/10.1007/BF00032929
  7. Georgiadis, H.G. and Vardoulakis, I. (1998), "Antiplane shear Lamb's problem treated by gradient elasticity with surface energy", Wave Motion, 28, 353-366. https://doi.org/10.1016/S0165-2125(98)00015-8
  8. Kitahara, M. (1985), Boundary Integral Equation Methods in Eigenvalue Problems of Elastodynamics and Thin Plates, Elsevier, Amsterdam.
  9. Lakes, R.S. (1983), "Size effects and micromechanics of a porous solid", J. Mater. Sci., 18, 2572-2580. https://doi.org/10.1007/BF00547573
  10. Lakes, R.S. (1986), "Experimental microelasticity of two porous solids", Int. J. Solids Struct., 22, 55-63. https://doi.org/10.1016/0020-7683(86)90103-4
  11. Lakes, R. (1995), "Experimental methods for study of Cosserat elastic solids and other generalized elastic continua", in Continuum Models for Materials with Microstructure, (Muhlhaus, H.B., ed.), John Wiley & Sons, Chichester, 1-25.
  12. Lanczos, C. (1970), The Variational Principles of Mechanics, University of Toronto Press, Toronto.
  13. Narayanan, G.V. and Beskos, D.E. (1982), "Numerical operational methods for time-dependent linear problems", Int. J. Num. Meth. Engng., 18, 1829-1854. https://doi.org/10.1002/nme.1620181207
  14. Papargyri-Beskou, S., Tsepoura, K.G., Polyzos, D. and Beskos, D.E. (2003), "Bending and stability analysis of gradient elastic beams", Int. J. Solids Struct., 40, 385-400. https://doi.org/10.1016/S0020-7683(02)00522-X
  15. Ru, C.Q. and Aifantis, E.C. (1993), "A simple approach to solve boundary value problems in gradient elasticity", Acta Mechanica, 101, 59-68. https://doi.org/10.1007/BF01175597
  16. Tiersten, H.F. and Bleustein, J.L. (1974), "Generalized elastic continua", in R.D. Mindlin and Applied Mechanics, (Herrmann, G., ed.), Pergamon Press, New York, 67-103.
  17. Tsagrakis, I.A. (2001), "The role of gradients in elasticity and plasticity: analytical and numerical applications", Doctoral Dissertation, Aristotle University of Thessaloniki, Thessaloniki, Greece (in Greek).
  18. Tsepoura, K.G., Papargyri-Beskou, S., Polyzos, D. and Beskos, D.E. (2002), "Static and dynamic analysis of gradient elastic bars in tension", Arch. Appl. Mech., 72, 483-497. https://doi.org/10.1007/s00419-002-0231-z
  19. Vardoulakis, I., Exadaktylos, G. and Kourkoulis, S.K. (1998), "Bending of marble with intrinsic length scales: a gradient theory with surface energy and size effects", J. de Physique IV8, 399-406.
  20. Vardoulakis, I. and Sulem, J. (1995), Bifurcation Analysis in Geomechanics, Blackie/Chapman and Hall, London.

Cited by

  1. Variational formulation of gradient or/and nonlocal higher-order shear elasticity beams vol.105, 2013, https://doi.org/10.1016/j.compstruct.2013.05.026
  2. Closed-form frequency solutions for simplified strain gradient beams with higher-order inertia vol.56, 2016, https://doi.org/10.1016/j.euromechsol.2015.10.005
  3. Wave dispersion studies in granular media by analytical and analytical–numerical methods vol.29, pp.5, 2009, https://doi.org/10.1016/j.soildyn.2008.10.003
  4. Finite element static and stability analysis of gradient elastic beam structures vol.226, pp.3, 2015, https://doi.org/10.1007/s00707-014-1216-z
  5. Strain and velocity gradient theory for higher-order shear deformable beams vol.85, pp.7, 2015, https://doi.org/10.1007/s00419-015-0997-4
  6. Wave dispersion in gradient elastic solids and structures: A unified treatment vol.46, pp.21, 2009, https://doi.org/10.1016/j.ijsolstr.2009.05.002
  7. Size-dependent generalized thermoelasticity model for Timoshenko microbeams vol.225, pp.7, 2014, https://doi.org/10.1007/s00707-013-1027-7
  8. Boundary element analysis of mode I and mixed mode (I and II) crack problems of 2-D gradient elasticity vol.196, pp.49-52, 2007, https://doi.org/10.1016/j.cma.2007.07.006
  9. Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory vol.133, 2015, https://doi.org/10.1016/j.compstruct.2015.08.014
  10. Structural modelling of nanorods and nanobeams using doublet mechanics theory 2018, https://doi.org/10.1007/s10999-017-9371-8
  11. The size-dependent natural frequency of Bernoulli–Euler micro-beams vol.46, pp.5, 2008, https://doi.org/10.1016/j.ijengsci.2007.10.002
  12. Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory vol.112, 2016, https://doi.org/10.1016/j.commatsci.2015.10.044
  13. A new Bernoulli–Euler beam model based on a simplified strain gradient elasticity theory and its applications vol.111, 2014, https://doi.org/10.1016/j.compstruct.2014.01.019
  14. Transient dynamic analysis of 3-D gradient elastic solids by BEM vol.83, pp.10-11, 2005, https://doi.org/10.1016/j.compstruc.2004.11.001
  15. Stability analysis of gradient elastic circular cylindrical thin shells vol.47, pp.11-12, 2009, https://doi.org/10.1016/j.ijengsci.2009.09.009
  16. Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory vol.165, 2017, https://doi.org/10.1016/j.compstruct.2017.01.032
  17. A spectral finite element for axial-flexural-shear coupled wave propagation analysis in lengthwise graded beam vol.36, pp.1, 2005, https://doi.org/10.1007/s00466-004-0637-2
  18. Torsional vibrations of a column of fine-grained material: A gradient elastic approach vol.76, 2015, https://doi.org/10.1016/j.jmps.2014.11.012
  19. Wave propagation in and free vibrations of gradient elastic circular cylindrical shells vol.223, pp.8, 2012, https://doi.org/10.1007/s00707-012-0643-y
  20. A micro scale Timoshenko beam model based on strain gradient elasticity theory vol.29, pp.4, 2010, https://doi.org/10.1016/j.euromechsol.2009.12.005
  21. Axial dynamics of a nanorod embedded in an elastic medium using doublet mechanics vol.160, 2017, https://doi.org/10.1016/j.compstruct.2016.11.023
  22. Static and dynamic analysis of micro beams based on strain gradient elasticity theory vol.47, pp.4, 2009, https://doi.org/10.1016/j.ijengsci.2008.08.008
  23. Transient dynamic analysis of a fluid-saturated porous gradient elastic column vol.222, pp.3-4, 2011, https://doi.org/10.1007/s00707-011-0539-2
  24. Derivation of Mindlin’s first and second strain gradient elastic theory via simple lattice and continuum models vol.49, pp.3-4, 2012, https://doi.org/10.1016/j.ijsolstr.2011.10.021
  25. Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory vol.331, pp.1, 2012, https://doi.org/10.1016/j.jsv.2011.08.020
  26. Wave Propagation in Flexoelectric Microstructured Solids vol.130, pp.2, 2018, https://doi.org/10.1007/s10659-017-9636-3
  27. Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates vol.78, pp.8, 2008, https://doi.org/10.1007/s00419-007-0166-5
  28. Longitudinal vibration analysis for microbars based on strain gradient elasticity theory vol.20, pp.4, 2014, https://doi.org/10.1177/1077546312463752
  29. Out-of-Plane Buckling of Microstructured Beams: Gradient Elasticity Approach vol.139, pp.8, 2013, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000543
  30. Wave propagation in 3-D poroelastic media including gradient effects vol.82, pp.10-11, 2012, https://doi.org/10.1007/s00419-012-0675-8
  31. Effect of Temperature Field on Flexural Wave Characteristics of a Bar Resembling Welding to Rigid Body vol.83-86, pp.1662-8985, 2009, https://doi.org/10.4028/www.scientific.net/AMR.83-86.1212
  32. Finite element free and forced vibration analysis of gradient elastic beam structures pp.1619-6937, 2018, https://doi.org/10.1007/s00707-018-2261-9
  33. Measuring material length parameter with a new solution of microbend beam in couple stress elasto-plasticity vol.33, pp.2, 2003, https://doi.org/10.12989/sem.2009.33.2.257
  34. Dynamic analysis of a gradient elastic polymeric fiber vol.26, pp.1, 2003, https://doi.org/10.1016/s0894-9166(13)60002-6
  35. A semianalytical approach for determining the nonclassical mechanical properties of materials vol.26, pp.5, 2003, https://doi.org/10.1515/jmbm-2017-0025
  36. A semianalytical approach for determining the nonclassical mechanical properties of materials vol.26, pp.5, 2003, https://doi.org/10.1515/jmbm-2017-0025
  37. Differential Quadrature Element Method for Free Vibration of Strain Gradient Beams with Elastic Boundary Conditions vol.7, pp.6, 2019, https://doi.org/10.1007/s42417-019-00151-y
  38. Small-scale effects on wave propagation in planar micro-lattices vol.494, pp.None, 2021, https://doi.org/10.1016/j.jsv.2020.115894
  39. Nonlocal integral static problems of nanobeams resting on an elastic foundation vol.89, pp.None, 2021, https://doi.org/10.1016/j.euromechsol.2021.104295
  40. Nonlinear dynamic response of open and breathing cracked functionally graded beam under single and multi-frequency excitation vol.242, pp.None, 2003, https://doi.org/10.1016/j.engstruct.2021.112437