참고문헌
- Atluri, S.N. and Zhu, T. (1998). "A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics", Comput. Mech., 22, 117-127. https://doi.org/10.1007/s004660050346
- Belytschko, T., Lu, Y.Y. and Gu, L. (1994). "Element-Free Galerkin methods", Int. J. Numer. Methods Engrg., 37, 229-256. https://doi.org/10.1002/nme.1620370205
- Belytschko, T. and Organ, D. (1995). "Coupled finite element-element-free Galerkin method", Comput. Mech., 17, 186-195. https://doi.org/10.1007/BF00364080
- Brebbia, C.A. (1978). The Boundary Element Method for Engineers. Pentech Press, London, Halstead Press, New York.
- Brebbia, C.A., Telles, J.C. and Wrobel, L.C. (1984). Boundary Element Techniques. Springer Verlag, Berlin.
- Chati, M.K., Mukherjee, S. and Mukherjee, Y.X. (1999). "The boundary node method for three-dimensional linear elasticity", Int. J. Numer. Methods Engrg., 46, 1163-1184. https://doi.org/10.1002/(SICI)1097-0207(19991120)46:8<1163::AID-NME742>3.0.CO;2-Y
- Chati, M.K. and Mukherjee, S. (2000). "The boundary node method for three-dimensional problems in potential theory", Int. J. Numer. Methods Engrg., 47, 1523-1547. https://doi.org/10.1002/(SICI)1097-0207(20000330)47:9<1523::AID-NME836>3.0.CO;2-T
- De, S. and Bathe, K.J. (2000). "The method of finite spheres", Comput. Mech., 25, 329-345. https://doi.org/10.1007/s004660050481
- Franke, C. and Schaback, R. (1997). "Solving partial differential equations by collocation using radial basis functions", Appl. Math. Comput., 93, 73-82.. https://doi.org/10.1016/S0096-3003(97)10104-7
- Gu, Y.T. and Liu, G.R. (2001). "A coupled Element Free Galerkin/Boundary Element method for stress analysis of two-dimension solid", Comput. Methods Appl. Mech. Engrg., 190, 4405-4419. https://doi.org/10.1016/S0045-7825(00)00324-8
- Hegen, D. (1996). "Element-free Galerkin methods in combination with finite element approaches", Comput. Methods Appl. Mech. Engrg., 135, 143-166. https://doi.org/10.1016/0045-7825(96)00994-2
- Kansa, E.J. (1990). "Multiquadrics-a scattered data approximation scheme with applications to computational fluid dynamics", Computers Math. Applic., 19(8/9), 127-145.
- Kothnur, V.S., Mukherjee, S. and Mukherjee, Y.X. (1999). "Two-dimensional linear elasticity by the boundary node method", Int. J. Solids Struct., 36, 1129-1147. https://doi.org/10.1016/S0020-7683(97)00363-6
- Liu, G.R. (2002), Mesh Free Methods: Moving Beyond the Finite Element Method. CRC press, Boca Raton, USA.
- Liu, G.R. and Gu, Y.T. (2000). "Coupling element free Galerkin and hybrid boundary element methods using modified variational formulation", Comput. Mech., 26, 166-173. https://doi.org/10.1007/s004660000164
- Liu, G.R. and Gu, Y.T. (2001a). "A point interpolation method for two-dimensional solid", Int. J. Numer. Methods Engrg., 50, 937-951. https://doi.org/10.1002/1097-0207(20010210)50:4<937::AID-NME62>3.0.CO;2-X
- Liu, G.R. and Gu, Y.T. (2001b). "A local point interpolation method for stress analysis of two-dimensional solids", Struct. Eng. Mech., 11(2), 221-236. https://doi.org/10.12989/sem.2001.11.2.221
- Liu, G.R. and Gu, Y.T. (2001c), "A Local Radial Point Interpolation Method (LRPIM) for free vibration analyses of 2-D solids", J. Sound Vib., 246(1), 29-46. https://doi.org/10.1006/jsvi.2000.3626
- Liu, G.R., Yan, L., Wang, J.G. and Gu, Y.T. (2002). "Point interpolation method based on local residual formulation using radial basis functions", Struct. Eng. Mech., 14(6), 713-732. https://doi.org/10.12989/sem.2002.14.6.713
- Mukherjee, Y.X. and Mukherjee, S. (1997). "Boundary node method for potential problems", Int. J. Numer. Methods Engrg., 40, 797-815. https://doi.org/10.1002/(SICI)1097-0207(19970315)40:5<797::AID-NME89>3.0.CO;2-#
- Nayroles, B., Touzot, G. and Villon, P. (1992). "Generalizing the finite element method: diffuse approximation and diffuse elements", Comput. Mech., 10, 307-318. https://doi.org/10.1007/BF00364252
- Roark, R.J. and Young, W.C. (1975). Formulas for Stress and Strain. McGraw-hill, London.
- Sharan, M., Kansa, E.J. and Gupta, S. (1997). "Application of the multiquadric method for numerical solution of elliptic partial differential equations", Applied Mathematics and Computation, 84, 275-302. https://doi.org/10.1016/S0096-3003(96)00109-9
- Wang, J.G. and Liu, G.R. (2002), "On the optimal shape parameters of radial basis functions used for 2-D meshlesss methods", Comput. Methods Appl. Mech. Eng., 191, 2611-2630. https://doi.org/10.1016/S0045-7825(01)00419-4
- Timoshenko, S.P. and Goodier, J.N. (1970). Theory of Elasticity. 3rd Edition. McGraw-hill, New York.
피인용 문헌
- Meshfree weak-strong (MWS) form method and its application to incompressible flow problems vol.46, pp.10, 2004, https://doi.org/10.1002/fld.785
- An enriched radial point interpolation method (e-RPIM) for analysis of crack tip fields vol.78, pp.1, 2011, https://doi.org/10.1016/j.engfracmech.2010.10.014
- THE COMPLEX VARIABLE ELEMENT-FREE GALERKIN (CVEFG) METHOD FOR TWO-DIMENSIONAL ELASTICITY PROBLEMS vol.01, pp.02, 2009, https://doi.org/10.1142/S1758825109000162
- Smoothed Point Interpolation Method for Elastoplastic Analysis vol.12, pp.04, 2015, https://doi.org/10.1142/S0219876215400137
- A scaled boundary radial point interpolation method for 2-D elasticity problems vol.112, pp.7, 2017, https://doi.org/10.1002/nme.5534
- Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation vol.34, pp.4, 2010, https://doi.org/10.1016/j.enganabound.2009.10.010
- Inverse Cauchy problem of annulus domains in the framework of spectral meshless radial point interpolation vol.33, pp.3, 2017, https://doi.org/10.1007/s00366-016-0482-x
- Meshless method of dual reciprocity hybrid radial boundary node method for elasticity vol.23, pp.5, 2010, https://doi.org/10.1016/S0894-9166(10)60047-X
- Application of meshless local radial point interpolation (MLRPI) on a one-dimensional inverse heat conduction problem vol.7, pp.3, 2016, https://doi.org/10.1016/j.asej.2015.07.009
- A pseudo-elastic local meshless method for analysis of material nonlinear problems in solids vol.31, pp.9, 2007, https://doi.org/10.1016/j.enganabound.2006.12.008
- Virtual boundary meshless least square collocation method for calculation of 2D multi-domain elastic problems vol.36, pp.5, 2012, https://doi.org/10.1016/j.enganabound.2011.12.008
- Advanced Implicit Meshless Approaches for the Rayleigh–Stokes Problem for a Heated Generalized Second Grade Fluid with Fractional Derivative 2017, https://doi.org/10.1142/S0219876218500329
- Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and multiquadrics discretizations vol.29, pp.12, 2005, https://doi.org/10.1016/j.enganabound.2005.07.004
- The Interpolating Element-Free Galerkin Method for 2D Transient Heat Conduction Problems vol.2014, 2014, https://doi.org/10.1155/2014/712834
- An extended boundary node method for modeling normal derivative discontinuities in potential theory across edges and corners vol.28, pp.9, 2004, https://doi.org/10.1016/j.enganabound.2004.01.007
- THE MESHLESS GALERKIN BOUNDARY NODE METHOD FOR TWO-DIMENSIONAL SOLIDS vol.10, pp.04, 2013, https://doi.org/10.1142/S0219876213500138
- MESHFREE METHODS AND THEIR COMPARISONS vol.02, pp.04, 2005, https://doi.org/10.1142/S0219876205000673
- Development of a meshless Galerkin boundary node method for viscous fluid flows vol.82, pp.2, 2011, https://doi.org/10.1016/j.matcom.2011.07.004
- Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discretizations with optimal shape parameter vol.86, pp.4, 2008, https://doi.org/10.1016/j.compstruct.2008.07.025
- Local integration of 2-D fractional telegraph equation via local radial point interpolant approximation vol.130, pp.2, 2015, https://doi.org/10.1140/epjp/i2015-15033-5
- A hybrid radial boundary node method based on radial basis point interpolation vol.33, pp.11, 2009, https://doi.org/10.1016/j.enganabound.2009.06.003
- Error analysis for moving least squares approximation in 2D space vol.238, 2014, https://doi.org/10.1016/j.amc.2014.04.037
- A new spectral meshless radial point interpolation (SMRPI) method: A well-behaved alternative to the meshless weak forms vol.54, 2015, https://doi.org/10.1016/j.enganabound.2015.01.004
- Local Heaviside-weighted LRPIM meshless method and its application to two-dimensional potential flows vol.59, pp.5, 2009, https://doi.org/10.1002/fld.1810
- Solving high order ordinary differential equations with radial basis function networks vol.62, pp.6, 2005, https://doi.org/10.1002/nme.1220
- Virtual boundary meshless least square integral method with moving least squares approximation for 2D elastic problem vol.37, pp.3, 2013, https://doi.org/10.1016/j.enganabound.2013.01.006
- A meshless method based on boundary integral equations and radial basis functions for biharmonic-type problems vol.35, pp.2, 2011, https://doi.org/10.1016/j.apm.2010.07.030
- Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics vol.37, pp.12, 2013, https://doi.org/10.1016/j.enganabound.2013.10.002
- Pricing European and American options by radial basis point interpolation vol.251, 2015, https://doi.org/10.1016/j.amc.2014.11.016
- THE INTERPOLATING ELEMENT-FREE GALERKIN (IEFG) METHOD FOR TWO-DIMENSIONAL ELASTICITY PROBLEMS vol.03, pp.04, 2011, https://doi.org/10.1142/S1758825111001214
- Adaptive meshless Galerkin boundary node methods for hypersingular integral equations vol.36, pp.10, 2012, https://doi.org/10.1016/j.apm.2011.12.033
- Spectral meshless radial point interpolation (SMRPI) method to two-dimensional fractional telegraph equation vol.39, pp.7, 2016, https://doi.org/10.1002/mma.3604
- Complex variable boundary element-free method for two-dimensional elastodynamic problems vol.198, pp.49-52, 2009, https://doi.org/10.1016/j.cma.2009.08.020
- Local integration of 2-D fractional telegraph equation via moving least squares approximation vol.56, 2015, https://doi.org/10.1016/j.enganabound.2015.02.012
- A meshless method for solving two-dimensional variable-order time fractional advection–diffusion equation vol.340, 2017, https://doi.org/10.1016/j.jcp.2017.03.061
- Meshless local Petrov–Galerkin (MLPG) method for three-dimensional nonlinear wave equations via moving least squares approximation vol.50, 2015, https://doi.org/10.1016/j.enganabound.2014.08.014
- A boundary element-free method (BEFM) for three-dimensional elasticity problems vol.36, pp.1, 2005, https://doi.org/10.1007/s00466-004-0638-1
- Analysis of Composite Plates Using a Layerwise Theory and Multiquadrics Discretization vol.12, pp.2, 2005, https://doi.org/10.1080/15376490490493952
- Boundary element-free method (BEFM) for two-dimensional elastodynamic analysis using Laplace transform vol.64, pp.12, 2005, https://doi.org/10.1002/nme.1417
- Meshless boundary node methods for Stokes problems vol.39, pp.7, 2015, https://doi.org/10.1016/j.apm.2014.10.009
- Moving Least Squares (MLS) Method for the Nonlinear Hyperbolic Telegraph Equation with Variable Coefficients vol.14, pp.03, 2017, https://doi.org/10.1142/S0219876217500268
- The Interpolating Boundary Element-Free Method for Unilateral Problems Arising in Variational Inequalities vol.2014, 2014, https://doi.org/10.1155/2014/518727
- Meshless simulation of equilibrium swelling/deswelling of pH-sensitive hydrogels vol.44, pp.2, 2006, https://doi.org/10.1002/polb.20698
- MODIFIED CHOLESKY DECOMPOSITION FOR SOLVING THE MOMENT MATRIX IN THE RADIAL POINT INTERPOLATION METHOD vol.11, pp.06, 2014, https://doi.org/10.1142/S0219876213500886
- Analysis of the Time Fractional 2-D Diffusion-Wave Equation via Moving Least Square (MLS) Approximation vol.3, pp.3, 2017, https://doi.org/10.1007/s40819-016-0247-7
- A Kriging interpolation-based boundary face method for 3D potential problems vol.37, pp.5, 2013, https://doi.org/10.1016/j.enganabound.2013.02.006
- Simulation of an extruded quadrupolar dielectrophoretic trap using meshfree approach vol.30, pp.11, 2006, https://doi.org/10.1016/j.enganabound.2006.03.014
- The complex variable reproducing kernel particle method for two-dimensional elastodynamics vol.19, pp.9, 2010, https://doi.org/10.1088/1674-1056/19/9/090204
- Time-dependent fractional advection-diffusion equations by an implicit MLS meshless method vol.88, pp.13, 2011, https://doi.org/10.1002/nme.3223
- Meshless local radial point interpolation (MLRPI) on the telegraph equation with purely integral conditions vol.129, pp.11, 2014, https://doi.org/10.1140/epjp/i2014-14241-9
- The meshfree strong form methods for solving one dimensional inverse Cauchy-Stefan problem vol.33, pp.3, 2017, https://doi.org/10.1007/s00366-016-0489-3
- An Enriched Radial Point Interpolation Method Based on Weak-Form and Strong-Form vol.18, pp.8, 2011, https://doi.org/10.1080/15376494.2011.621832
- Application of meshfree methods for solving the inverse one-dimensional Stefan problem vol.40, 2014, https://doi.org/10.1016/j.enganabound.2013.10.013
- AN INTERPOLATING BOUNDARY ELEMENT-FREE METHOD WITH NONSINGULAR WEIGHT FUNCTION FOR TWO-DIMENSIONAL POTENTIAL PROBLEMS vol.10, pp.06, 2013, https://doi.org/10.1142/S0219876213500436
- Inverse analysis of heat transfer across a multilayer composite wall with Cauchy boundary conditions vol.79, 2014, https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.041
- Meshless analysis and applications of a symmetric improved Galerkin boundary node method using the improved moving least-square approximation vol.40, pp.4, 2016, https://doi.org/10.1016/j.apm.2015.09.080
- Local integration of population dynamics via moving least squares approximation vol.32, pp.2, 2016, https://doi.org/10.1007/s00366-015-0424-z
- Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM) vol.181, pp.4, 2010, https://doi.org/10.1016/j.cpc.2009.12.010
- The meshless virtual boundary method and its applications to 2D elasticity problems vol.20, pp.1, 2007, https://doi.org/10.1007/s10338-007-0704-2
- A new hybrid boundary node method based on Taylor expansion and the Shepard interpolation method vol.102, pp.8, 2015, https://doi.org/10.1002/nme.4861
- An implicit RBF meshless approach for time fractional diffusion equations vol.48, pp.1, 2011, https://doi.org/10.1007/s00466-011-0573-x
- Stability and convergence of spectral radial point interpolation method locally applied on two-dimensional pseudoparabolic equation vol.33, pp.3, 2017, https://doi.org/10.1002/num.22119
- Analysis of meshless local and spectral meshless radial point interpolation (MLRPI and SMRPI) on 3-D nonlinear wave equations vol.89, 2014, https://doi.org/10.1016/j.oceaneng.2014.08.007
- On the convergence analysis, stability, and implementation of meshless local radial point interpolation on a class of three-dimensional wave equations vol.105, pp.2, 2016, https://doi.org/10.1002/nme.4960
- AN ADVANCED MESHLESS METHOD FOR TIME FRACTIONAL DIFFUSION EQUATION vol.08, pp.04, 2011, https://doi.org/10.1142/S0219876211002745
- An improved pseudospectral meshless radial point interpolation (PSMRPI) method for 3D wave equation with variable coefficients pp.1435-5663, 2018, https://doi.org/10.1007/s00366-018-0656-9
- A novel hybrid meshless method for seepage flows in non-homogeneous and anisotropic soils vol.35, pp.2, 2018, https://doi.org/10.1108/EC-07-2017-0245
- Pseudospectral Meshless Radial Point Hermit Interpolation Versus Pseudospectral Meshless Radial Point Interpolation vol.17, pp.7, 2003, https://doi.org/10.1142/s0219876219500233