DOI QR코드

DOI QR Code

Behaviour of interfacial layer along granular soil-structure interfaces

  • Huang, Wenxiong (Discipline of Civil, Surveying & Environmental Engineering, School of Engineering, The University of Newcastle) ;
  • Bauer, Erich (Institute of General Mechanics, Graz University of Technology) ;
  • Sloan, Scott W. (Discipline of Civil, Surveying & Environmental Engineering, School of Engineering, The University of Newcastle)
  • 투고 : 2002.09.10
  • 심사 : 2003.01.24
  • 발행 : 2003.03.25

초록

As shear occurs along a soil-structure interface, a localized zone with a thickness of several grain diameters will develop in soil along the interface, forming an interfacial layer. In this paper, the behaviour of a soil-structure interface is studied numerically by modelling the plane shear of a granular layer bounded by rigid plates. The mechanical behaviour of the granular material is described with a micro-polar hypoplastic continuum model. Numerical results are presented to show the development of shear localization along the interface for shearing under conditions of constant normal pressure and constant volume, respectively. Evolution of the resistance on the surface of the bounding plate is considered with respect to the influences of grain rotation.

키워드

참고문헌

  1. Aifantis, E.C. (1984), "On the microstructural original of certain inelastic models", J. Eng. Mat. Technol., 106, 326-334. https://doi.org/10.1115/1.3225725
  2. Bauer, E. and Tejchman, J. (1995), "Numerical study of the effect of grain rotations and material behaviour in a fault zone", In Rossmanith (ed.) Proc. 2nd Int. Conf. On Mechanics of Jointed and Faulted Rocks. A.A. Balkema, 317-323.
  3. Bauer, E. (1996), "Calibration of a comprehensive hypoplastic model for granular materials", Soils and Foundations, 36(1), 13-26. https://doi.org/10.3208/sandf.36.13
  4. Bauer, E. (2000), "Conditions for embedding Casagrade's critical states into hypoplasticity", Mech. Cohesive- Frict. Mater., 2(2), 213-237.
  5. Bauer, E. and Huang, W. (2001), "Evolution of polar quantities in a granular Cosserat material under shearing", In H.-B. Muhlhaus et al. (eds), Bifurcation and Localisation Theory in Geomechanics, Swets & Zeitlinger, Lisse, 227-238.
  6. Bogdanova-Bontcheva, N. and Lippmann, H. (1975), "Rotationssymmetrisches ebenes Fliessen eines granularen Modellmaterials", Acta Mechanica, 21, 93-113. https://doi.org/10.1007/BF01172830
  7. Brummund, W.F. and Leonards, G.A. (1973), "Experimental study of static and dynamic friction between sand and typical construction materials", Journal of Testing & Evaluation, 1, 162-165. https://doi.org/10.1520/JTE10893J
  8. de Borst, R. (1991), "Simulation of strain localization: A reappraisal of the Cosserat continuum", Engineering Computations, 8, 317-332. https://doi.org/10.1108/eb023842
  9. de Borst, R. and Mühlhau, H.B. (1992), "Gradient-dependent plasticity: formulation and algorithmic aspects", Int. J. Numer. Method. Engng., 35, 521-539. https://doi.org/10.1002/nme.1620350307
  10. de Borst, R., Sluys, L.J., Mühlhaus, H.-B. and Pamin, J. (1993), "Fundamental issues in finite element analyses of localization of deformation", Engng. Computations, 10, 99-121. https://doi.org/10.1108/eb023897
  11. Eringen, C. (1976), "Polar and nonlocal field theories", Continuum Physics, Vol. IV. Academic Press, New York, San Francisco, London.
  12. Gudehus, G. (1996), "A comprehensive constitutive equation for granular materials", Soil and Foundations. 36(1), 1-12. https://doi.org/10.3208/sandf.36.1
  13. Gudehus, G. (1998), "Shear localization in simple grain skeleton with polar effect", In T. Adachi, F. Oka and A. Yashima (eds.), Proc. 4th Int. Workshop on Localization and Bifurcation Theory for Soils and Rocks, A.A. Balkema.
  14. Herle, I. and Gudehus, G. (1999). "Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies", Mech. of Cohesive-Fric. Mater., 4, 461-486. https://doi.org/10.1002/(SICI)1099-1484(199909)4:5<461::AID-CFM71>3.0.CO;2-P
  15. Huang, W. (2000), "Hypoplastic modelling of shear localization in granular materials", PhD Thesis, Graz University of Technology.
  16. Huang, W. and Bauer, E. (2003), "Numerical investigations of shear localization in a micro-polar hypoplastic materials", Int. J. Numer. and Anal. Meth. Geomech., 27, 325-352. https://doi.org/10.1002/nag.275
  17. Huang, W., Nübel, K. and Bauer, E. (2002), "Polar extension of a hypoplastic model for granular materials with shear localization", Mechanics of Materials, 34, 563-576. https://doi.org/10.1016/S0167-6636(02)00163-1
  18. Kishida, H. and Uesugi, M. (1987), "Tests of the interface between sand and steel in the simple shear apparatus", Geotechnique, 37, 45-52. https://doi.org/10.1680/geot.1987.37.1.45
  19. Kolymbas, D. (1985), "A generalized hypoelastic constitutive law", Proc. XI Int. Conf. Soil Mechanics and Foundation Engineering, San Francisco, A.A. Balkema.
  20. Kolymbas, D. (2000), Introduction to Hypoplasticity, A.A. Balkema.
  21. Loffelmann, F. (1989), "Theoretische und experimentelle Untersuchungen zur Schüttgut-Wand-Wechselwirkung und zum Mischen und Entmischen von Granulaten", Doctoral thesis, University of Karlsruhe.
  22. Muhlhaus, H.-B. and Vadoulakis, I. (1987), "The thickness of shear bands in granular materials", Geotechnique, 37, 271-283. https://doi.org/10.1680/geot.1987.37.3.271
  23. Needleman, A. and Tvergaard, V. (1984), "Finite element analysis of localization in plasticity", In J.T. Oden and G.F. Carey (eds.), Finite Elements: Special Problems in Soil Mechanics, Prentice-Hall, 94-157.
  24. Niemunis, A. (1993), "Hypoplasticity vs Elastoplasticity, Selected Topics", In D. Kolymbas (ed.) Modern Approaches to Plasticity, Elsevier, 277-307.
  25. Oda, M., Konish, J. and Nemat-Nasser, S. (1982), "Experimental micromechanical evaluation of strength of granular materials: effect of particle rolling", Mechanics of Materials, 1, 269-283. https://doi.org/10.1016/0167-6636(82)90027-8
  26. Rice, J. (1976), "The localization of plastic deformation", In W.D. Koiter (ed), Theoretical and Applied Mechanics, North Holland Publishing Company, Amsterdam, 207-220.
  27. Roscoe, K.H. (1970), "The influence of strains in soil mechanics, 10th Rankine lecture", Geotechnique, 20(2), 129-170. https://doi.org/10.1680/geot.1970.20.2.129
  28. Rudnicki, J.W. and Rice, J. (1975), "Conditions for the localization of deformation in pressure sensitive dilatant materials", J. Mech. Phys. Solids, 23, 371-394. https://doi.org/10.1016/0022-5096(75)90001-0
  29. Schaefer, H. (1967), "Das Cosserat-Kontinuum", Z. Angew. Math. Mech., 47, 485-498. https://doi.org/10.1002/zamm.19670470802
  30. Tejchman, J. (1989), "Scherzonenbildung und Verspannungseffekte in Granulaten unter Berucksichtigung von Korndrehungen", Veroffentlichungen des Institutes fur Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, Heft 117.
  31. Tejchman, J. (1994), "Numerical study on localized deformation in a Cosserat continuum", In R. Chambon, J. Desrues and I. Vardoulakis (eds.) Localisation and Bifurcation Theory for Soils and Rocks, A.A. Balkema, 257-274.
  32. Tejchman, J. and Wu, W. (1995), "Experimental and numerical study of sand-steel interfaces", Int. J. Numer. Anal. Meth. Geomech., 19(3), 513-537. https://doi.org/10.1002/nag.1610190803
  33. Tejchman, J. and Bauer, E. (1996), "Numerical simulation of shear band formation with a polar hypoplastic constitutive model", Computers and Geotechnics, 19(3), 221-244. https://doi.org/10.1016/0266-352X(96)00004-3
  34. Tejchman, J. (1997), "Modelling of shear localisation and autogeneous dynamic effects in granular bodies", Veroffentlichungen des Institutes fur Bodenmechanik und Felsmechanik der Universitat Fridericiana in Karlsruhe, Heft 140.
  35. Tejchman, J. and Gudehus, G. (2001), "Shearing of a narrow granular layer with polar quantities", Int. J. Numer. Anal. Meth. Geomech., 25, 1-28. https://doi.org/10.1002/1096-9853(200101)25:1<1::AID-NAG115>3.0.CO;2-8
  36. Truesdell, C. (1955), "Hypoelasticity", J. Rat. Mech. Anal., 4, 83-133.
  37. Usugi, M., Kishida, H. and Tsubakihara, Y. (1988), "Behavior of sand particles in sand-steel friction", Soils and Foundations, 28(1), 107-118. https://doi.org/10.3208/sandf1972.28.107
  38. Vardoulakis, I. and Aifantis, E.C. (1989), "Gradient dependent dilatancy and its implication in shear banding", Ingenieur Archiv, 59, 197-208. https://doi.org/10.1007/BF00532250
  39. Wu, W. and Niemunis, A. (1996), "Failure criterion, flow rule and dissipation function derived from hypoplasticity", Mech. of Cohesive-Frict. Mater., 1, 145-163. https://doi.org/10.1002/(SICI)1099-1484(199604)1:2<145::AID-CFM8>3.0.CO;2-9

피인용 문헌

  1. FE-investigations of micro-polar boundary conditions along interface between soil and structure vol.12, pp.4, 2010, https://doi.org/10.1007/s10035-010-0191-x
  2. Analysis of plane Couette shear test of granular media in a Cosserat continuum approach vol.69, pp.1, 2014, https://doi.org/10.1016/j.mechmat.2013.09.008
  3. State of the art: Mechanical behavior of soil–structure interface vol.19, pp.10, 2009, https://doi.org/10.1016/j.pnsc.2008.09.012
  4. Initial response of a micro-polar hypoplastic material under plane shearing vol.52, pp.1, 2005, https://doi.org/10.1007/s10665-004-3949-5
  5. Effects of periodic fluctuations of micro-polar boundary conditions on shear localizations in granular soil-structure interaction vol.36, pp.7, 2012, https://doi.org/10.1002/nag.1031
  6. Initial response of a micro-polar hypoplastic material under plane shearing vol.52, pp.1-3, 2005, https://doi.org/10.1007/BF02694029
  7. Modeling shear localization along granular soil–structure interfaces using elasto-plastic Cosserat continuum vol.49, pp.2, 2012, https://doi.org/10.1016/j.ijsolstr.2011.09.005
  8. Numerical studies on the effects of the lateral boundary on soil-structure interaction in homogeneous soil foundations vol.20, pp.4, 2005, https://doi.org/10.12989/sem.2005.20.4.421
  9. Numerical simulation of the effect of interface friction of a bounding structure on shear deformation in a granular soil vol.36, pp.12, 2012, https://doi.org/10.1002/nag.1059
  10. Deformation mechanism of strain localization in 2D numerical interface tests 2018, https://doi.org/10.1007/s11440-017-0561-1
  11. Modeling interface shear behavior of granular materials using micro-polar continuum approach vol.30, pp.1, 2018, https://doi.org/10.1007/s00161-017-0588-4
  12. Experimental Study on Mechanical Properties of Grout-Soil Interface in Anchor System of Rammed Earthen Sites vol.20, pp.6, 2003, https://doi.org/10.1061/(asce)gm.1943-5622.0001706
  13. The influence of roughness on cyclic and post-cyclic shear behavior of red clay-concrete interface subjected to up to 1000 cycles vol.273, pp.None, 2003, https://doi.org/10.1016/j.conbuildmat.2020.121718
  14. Comparative 3D DEM simulations of sand-structure interfaces with similarly shaped clumps versus spheres with contact moments vol.16, pp.11, 2003, https://doi.org/10.1007/s11440-021-01255-0