DOI QR코드

DOI QR Code

Adaptive mesh generation by bubble packing method

  • Kim, Jeong-Hun (Department of Mechanical Engineering (ME3028), Korea Advanced Institute of Science and Technology) ;
  • Kim, Hyun-Gyu (Department of Mechanical Engineering (ME3028), Korea Advanced Institute of Science and Technology) ;
  • Lee, Byung-Chai (Department of Mechanical Engineering (ME3028), Korea Advanced Institute of Science and Technology) ;
  • Im, Seyoung (Department of Mechanical Engineering (ME3028), Korea Advanced Institute of Science and Technology)
  • Received : 2002.05.13
  • Accepted : 2002.12.06
  • Published : 2003.01.25

Abstract

The bubble packing method is implemented for adaptive mesh generation in two and three dimensions. Bubbles on the boundary of a three-dimensional domain are controlled independently of the interior bubbles in the domain, and a modified octree technique is employed to place initial bubbles in the three-dimensional zone. Numerical comparisons are made with other mesh generation techniques to demonstrate the effectiveness of the present bubble packing scheme for two- and three-dimensional domains. It is shown that this bubble packing method provides a high quality of mesh and affordable control of mesh density as well.

Keywords

References

  1. Boender, E. (1994), "Reliable Delaunay-based mesh generation and mesh improvement", Comm. Numer.Methods Eng., 10, 773-783. https://doi.org/10.1002/cnm.1640101003
  2. Borouchaki, H. and Lo, S.H. (1995), "Fast Delaunay triangulation in three dimensions", Comp. Methods Appl.Mech. Eng., 128, 153-167. https://doi.org/10.1016/0045-7825(95)00854-1
  3. Borouchaki, H. and George, P.L. (1996), "Optimal Delaunay point insertion", Int. J. Numer. Methods Eng., 39,3407-3437. https://doi.org/10.1002/(SICI)1097-0207(19961030)39:20<3407::AID-NME5>3.0.CO;2-C
  4. Bowyer, A. (1981), "Computing Dirichlet tessellations", The Computer Journal, 24, 162-165. https://doi.org/10.1093/comjnl/24.2.162
  5. Choi, C.K., Lee, G.H. and Chung, H.J. (2002), "An adaptive analysis in the element-free Galerkin method usingbubble meshing technique", Comp. Struct. Eng. Inst. Korea, 15, 84-95.
  6. Cingoski, V., Murakawa, R., Kaneda, K. and Yamashita, H. (1997), "Automatic mesh generation in finiteelement analysis using dynamic bubble system", J. Appl. Phys., 81, 4085-4087. https://doi.org/10.1063/1.365087
  7. Dwyer, J.O. and Evans, P. (1997), "Triangular element refinement in automatic mesh generation", IEEETransactions on Magnetics, 33, 1740-1743. https://doi.org/10.1109/20.582609
  8. Frey, P.J., Borouchaki, H. and George, P.L. (1998), "Delaunay tetrahedralization using an advancing frontapproach", Comp. Methods Appl. Mech. Eng., 157, 115-132. https://doi.org/10.1016/S0045-7825(97)00222-3
  9. Fuchs, A. (1997), "Almost regular Delaunay-triangulations", Int. J. Numer. Methods Eng., 40, 4595-4610. https://doi.org/10.1002/(SICI)1097-0207(19971230)40:24<4595::AID-NME274>3.0.CO;2-E
  10. George, P.L. (1991), Automatic Mesh Generation, J. Wiley, New York.
  11. Lee, G.H., Choi, C.K. and Chung, H.J.(2000), "An adaptive analysis in the element-free Galerkin method usingbubble meshing technique", European Congress on Computational Methods in Applied Sciences andEngineering, Barcelona, Spain.
  12. Lo, S.H. (1989), "Delaunay triangulation of non-convex planar domains", Int. J. Numer. Methods Eng., 28, 2695-2707. https://doi.org/10.1002/nme.1620281113
  13. Lohner, R. (1996), "Progress in grid generation via the advancing front technique", Eng. Comp., 12, 186-210. https://doi.org/10.1007/BF01198734
  14. Miller, G.L., Talmor, D., Teng, S.H., Walkington, N. and Wang, H. (1998), "Control volume meshes usingsphere packing generation, refinement and coarsening", Lecture Notes in Computer Science, 1457, 128-131. https://doi.org/10.1007/BFb0018533
  15. Rivara, M.C. (1997), "New longest-edge algorithm for the refinement of unstructured triangulations", Int. J.Numer. Meth. Eng., 40, 3313-3324. https://doi.org/10.1002/(SICI)1097-0207(19970930)40:18<3313::AID-NME214>3.0.CO;2-#
  16. Samuelsson, A., Wiberg, N.E. and Zeng, L.F. (1993), "The effectivity of the Zienkiewicz Zhu error estimate andtwo 2D adaptive mesh generators", Comm. Numer. Meth. Eng., 9, 687-699. https://doi.org/10.1002/cnm.1640090808
  17. Shimada, K., Yamada, A. and Itoh, T. (1997), "Anisotropic triangular meshing of parametric surfaces via closepacking of ellipsoidal bubbles", Proc. 6th Int. Meshing Roundtable, Sandia National Laboratories, 375-390.
  18. Wastson, D.F. (1981), "Computing the n-dimensional Delaunay Tessellations with applications to Voronoipolytopes," The Computer Journal,, 24, 167-172. https://doi.org/10.1093/comjnl/24.2.167
  19. Weatherill, N.P. (1994), "Efficient three-dimensional Delaunay triangulation with automatic point creation andimposed boundary constraints", Int. J. Numer. Methods Eng., 37, 2005-2039. https://doi.org/10.1002/nme.1620371203
  20. Yamakawa, S. and Shimada, K. (2000), "High quality anisotropic tetrahedral mesh generation via ellipsoidalbubble packing", Proc. 9th International Meshing Roundable, New Oreans, 263-273.
  21. Yerry, M.A. and Shephard, M.S. (1984), "Three-dimensional mesh generation by modified octree technique", Int.J. Numer. Meth. Eng., 20, 1965-1990. https://doi.org/10.1002/nme.1620201103
  22. Yokoyama, T., Cingoski, V., Kaneda, K. and Yamashita, H. (1999), "3-D automatic mesh generation for FEAusing dynamic bubble system", IEEE Transaction on Magnetics, 35, 1318-1321. https://doi.org/10.1109/20.767204
  23. Zienkiewicz, O.C. and Zhu, J.Z. (1989), "Error estimates and adaptive refinement for plate bending problems",Int. J. Numer. Meth. Eng., 28, 2839-2853. https://doi.org/10.1002/nme.1620281209
  24. Zienkiewicz, O.C. and Zhu, J.Z. (1991), "Adaptivity and mesh generation", Int. J. Numer. Meth. Eng., 32, 783-810. https://doi.org/10.1002/nme.1620320409

Cited by

  1. Acceleration Strategies Based on an Improved Bubble Packing Method vol.16, pp.01, 2014, https://doi.org/10.4208/cicp.080213.151113a
  2. Generation of finite element mesh with variable size over an unbounded 2D domain vol.194, pp.45-47, 2005, https://doi.org/10.1016/j.cma.2004.12.011
  3. Generation of tetrahedral mesh of variable element size by sphere packing over an unbounded 3D domain vol.194, pp.48-49, 2005, https://doi.org/10.1016/j.cma.2004.11.022
  4. A fast and practical method to pack spheres for mesh generation vol.24, pp.4, 2008, https://doi.org/10.1007/s10409-008-0165-y
  5. Acceleration of Dynamic Bubble Mesh Generation for Large-Scale Model vol.50, pp.2, 2014, https://doi.org/10.1109/TMAG.2013.2281617
  6. Computational Support to Design and Fabrication of Traditional Indian Jewelry vol.12, pp.4, 2015, https://doi.org/10.1080/16864360.2014.997642
  7. Boundary recovery after 3D Delaunay tetrahedralization without adding extra nodes vol.72, pp.6, 2007, https://doi.org/10.1002/nme.2044
  8. The Parallelized Automatic Mesh Generation Using Dynamic Bubble System With GPGPU vol.49, pp.5, 2013, https://doi.org/10.1109/TMAG.2013.2239625
  9. GPU-based parallelization for bubble mesh generation vol.36, pp.4, 2017, https://doi.org/10.1108/COMPEL-11-2016-0476
  10. Adaptive finite element analysis of elliptic problems based on bubble-type local mesh generation vol.280, 2015, https://doi.org/10.1016/j.cam.2014.11.049
  11. Automatic Generation of a Pattern of Geometric Features for Industrial Design vol.135, pp.11, 2013, https://doi.org/10.1115/1.4025371
  12. A Clustering-Based Bubble Method for Generating High-Quality Tetrahedral Meshes of Geological Models vol.10, pp.15, 2020, https://doi.org/10.3390/app10155292