참고문헌
- ABAQUS/Standard User's Manual, Version 5.8 (1998), Hibbitt, Karlsson & Sorensen, Inc.: Rawtucket, RhodeIsland.
- Allman, D.J. (1984), "A compatible triangular element including vertex rotations for plane elasticity analysis",Comput. Struct., 19(1-2), 1-8. https://doi.org/10.1016/0045-7949(84)90197-4
- Allman, D.J. (1988), "Evaluation of the constant triangle with drilling rotations", Int. J. Numer. Meth. Eng., 50,25-69.
- Ayad, R., Dhatt, G. and Batoz, J.L. (1998), "A new hybrid-mixed variational approach for Reissner-Mindlinplates: The MiSP model", Int. J. Numer. Meth. Eng., 42, 1149-1179. https://doi.org/10.1002/(SICI)1097-0207(19980815)42:7<1149::AID-NME391>3.0.CO;2-2
- Ayad, R., Rigolot, A. and Talbi, N. (2001), "An improved three-node hybrid-mixed element for Mindlin/Reissnerplates", Int. J. Numer. Meth. Eng., 51, 919-942 https://doi.org/10.1002/nme.188
- Babuška, I. and Scapolla, T. (1989), "Benchmark computation and performance evaluation for a rhombic platebending problem", Int. J. Numer. Meth. Eng., 28, 155-179. https://doi.org/10.1002/nme.1620280112
- Badiansky, B. (1974), "Theory of buckling and post-buckling behavior of elastic structure", In: Advances inApplied Mechanics, New York: Academic Press.
- Bathe, K.J. and Bolourchi, S. (1980), "A geometric and material nonlinear plate and shell element", Comput.Struct., 21, 367-383.
- Bathe, K.J. and Dvorkin, E. (1985), "Short communication - a four node plate bending element based onMindlin/Reissner plate theory and mixed interpolation", Int. J. Numer. Meth. Eng., 21, 367-383. https://doi.org/10.1002/nme.1620210213
- Batoz, J.L., Bathe, K.J. and Ho, W.J. (1980), "A Study of three-node triangular plate bending elements", Int. J.Numer. Meth. Eng., 15, 1771-1812. https://doi.org/10.1002/nme.1620151205
- Batoz, J.L. and Lardeur, P. (1989), "A discrete shear triangular nine d.o.f. element for the analysis of thick tovery thin plates", Int. J. Numer. Meth. Eng., 29, 533-560.
- Batoz, J.L. and Katili, I. (1992), "On a simple triangular Reissner/Mindlin plate element based on incompatiblemodes and discrete constrains", Int. J. Numer. Meth. Eng., 35, 1603-1632. https://doi.org/10.1002/nme.1620350805
- Bazeley, G.P., Cheung, Y.K., Irons, B.M. and Zienkiewicz, O.C. (1965), "Triangular elements in bendingconforming and non-conforming solutions", Proc. Conf. Matrix Methods in Struct. Mech., Air Force Instituteof Technology, Wright-Patterson A.F.Base, OH, 547-576.
- Carpenter, N., Stolarski, H. and Belytschko, T. (1986), "Improvements in 3-node triangular shell elements", Int.J. Numer. Meth. Eng., 23, 1643-1667. https://doi.org/10.1002/nme.1620230906
- Cheung, Y.K. and Wanji, C. (1995), "Refined nine-parameter triangular thin plate bending element by usingrefined direct stiffness method", Int. J. Numer. Meth. Eng., 38, 283-298. https://doi.org/10.1002/nme.1620380208
- Darendeliler, H., Oral, S. and Turgut, A. (1999), "A pseudo-layered, elastic-plastic, flat-shell finite element", Comput. Meth. Appl. Mech. Eng., 174, 211-218.
- Felippa, C.A. and Alexander, S. (1992), "Membrane triangles with corner drilling freedom - III Implementationand performance evolution", Finite Elements in Analysis and Design, 12, 203-239. https://doi.org/10.1016/0168-874X(92)90035-B
- Fish, J. and Belytshko, T. (1992), "Stabilized rapidly convergent 18-degree-of-freedom flat shell triangularelement", Int. J. Numer. Meth. Eng., 33, 149-162. https://doi.org/10.1002/nme.1620330111
- Guan, Y. and Tang, L. (1992), "A quasi-conforming nine-node degenerated shell finite element", Finite Elementsin Analysis and Design, 11, 165-176. https://doi.org/10.1016/0168-874X(92)90048-H
- Hughes, T.J.R. and Liu, W.K. (1981), "Nonlinear finite element analysis of shells, Part I: Three dimensionalshells", Comput. Method Appl. Mech. Eng., 26, 331-362. https://doi.org/10.1016/0045-7825(81)90121-3
- Katili, I. (1993), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory andassumed shear strain fields - Part I: An extended DKT element for thick-plate bending analysis", Int. J.Numer. Meth. Eng., 36, 1859-1883. https://doi.org/10.1002/nme.1620361106
- Katili, I. (1993), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory andassumed shear strain fields Part II: An extended DKQ element for thick-plate bending analysis", Int. J. Numer.Meth. Eng., 36, 1885-1908. https://doi.org/10.1002/nme.1620361107
- Long, Y.Q., Bu, X., Long, Z. and Xu, Y. (1995), "Generalized conforming plate bending elements using pointand line compatibility conditions", Comput. Struct., 54(4), 717-723. https://doi.org/10.1016/0045-7949(94)00362-7
- Long, Y.Q. and Xin, K. (1989), "Generalized conforming element for bending and buckling analysis of plates",Finite Elements in Analysis and Design, 5, 15-30. https://doi.org/10.1016/0168-874X(89)90003-6
- Long, Y.Q. and Xu, Y. (1994), "Generalized conforming triangular membrane element with rigid rotationalfreedoms", Finite Elements in Analysis and Design, 17, 259-271. https://doi.org/10.1016/0168-874X(94)90002-7
- Long, Y.Q. and Zhao, J. (1988), "A new generalized conforming triangular element for thin plates",Communications in Applied Numerical Methods, 4, 781-792. https://doi.org/10.1002/cnm.1630040612
- Long, Z.F. (1992), "Triangular and rectangular plate elements based on generalized compatibility conditions",Comput. Mech., 10, 281-288. https://doi.org/10.1007/BF00370094
- Long, Z.F. (1993), "Two generalized conforming plate elements based on semiLoof constrains", Comput. Struct.,47(2), 299-304. https://doi.org/10.1016/0045-7949(93)90380-V
- Morley, L.S.D. (1963), Skew Plates and Structures, International Series of Monographs in Aeronautics andAstronautics, Macmillan, New York.
- Olson, M.D. and Bearden, T.W. (1979), "The simple flat triangular shell element revisited", Int. J. Numer. Meth.Eng., 14, 51-68. https://doi.org/10.1002/nme.1620140105
- Parisch, H. (1979), "A critical survey of the 9-node degenerated shell element with special emphasis on thinshell", Comput. Method Appl. Mech. Eng., 20, 323-350. https://doi.org/10.1016/0045-7825(79)90007-0
- Providas, E. and Kattis, M.A. (2000), "An assessment of two fundamental flat triangular shell elements withdrilling rotations", Comput. Struct., 77(2), 129-139. https://doi.org/10.1016/S0045-7949(99)00215-1
- Razzaque, A. (1973), "Program for triangular bending elements with derivative smoothing", Int. J. Numer. Meth.Eng., 6, 333-345. https://doi.org/10.1002/nme.1620060305
- Saleeb, A.F., Chang, T.Y., Graf, W. and Yingyeunyong, S. (1990), "A hybrid/mixed model for non-linear shellanalysis and its applications to large rotation problems", Int. J. Numer. Meth. Eng., 29, 407-446. https://doi.org/10.1002/nme.1620290213
- Soh, A.K., Cen, S., Long, Y.Q. and Long, Z.F. (2001), "A new twelve DOF quadrilateral element for analysis ofthick and thin plate", European Journal of Mechanics A/Solids, 20(2), 299-326. https://doi.org/10.1016/S0997-7538(00)01129-3
- Soh, A.K., Long, Z.F. and Cen, S. (1999), "A new nine DOF triangular element for analysis of thick and thinplates", Comput. Mech., 24, 408-417. https://doi.org/10.1007/s004660050461
- Taylor, R.L. and Auricchio, F. (1993), "Linked interpolation for Reissner-Mindlin plate element: part II-a simpletriangle", Int. J. Numer. Meth. Eng., 36, 3057-3066. https://doi.org/10.1002/nme.1620361803
- To, C.W.S. and Liu, M.L. (1994), "Hybrid strain based three-node flat triangular shell elements", Finite Elementsin Analysis and Design, 17, 169-203. https://doi.org/10.1016/0168-874X(94)90080-9
- To, C.W.S. and Liu, M.L. (1995), "Hybrid strain based three-node flat triangular shell elements-II. Numericalinvestigation of nonlinear problems", Comput. Struct., 54(6), 1057-1076. https://doi.org/10.1016/0045-7949(94)00396-K
- Wanji, C. and Cheung, Y.K. (1998), "Refined triangular discrete Kirchhoff thin plate bending element", Int. J.Numer. Meth. Eng., 41, 1507-1525. https://doi.org/10.1002/(SICI)1097-0207(19980430)41:8<1507::AID-NME351>3.0.CO;2-T
- Wanji, C. and Cheung, Y.K. (1999), "Refined non-conforming triangular elements for analysis of shell structures", Int. J. Numer. Meth. Eng., 46, 433-455. https://doi.org/10.1002/(SICI)1097-0207(19990930)46:3<433::AID-NME683>3.0.CO;2-Z
- Wanji, C. and Cheung, Y.K. (2001), "Refined 9-Dof triangular Mindlin plate elements", Int. J. Numer. Meth.Eng., 51, 1259-1281. https://doi.org/10.1002/nme.196
- Zhang, Q., Lu, M. and Kuang, W. (1998), "Geometric non-linear analysis of space shell structures usinggeneralized conforming flat shell elements for space shell structures", Communications in Numerical Methodsin Engineering, 14, 941-957. https://doi.org/10.1002/(SICI)1099-0887(1998100)14:10<941::AID-CNM200>3.0.CO;2-S
- Zhang, Y., Cheung, Y.K. and Chen, W.J. (2000), "Two refined nonconforming flat shell elements", Int. J. Numer.Meth. Eng., 49, 355-382. https://doi.org/10.1002/1097-0207(20000930)49:3<355::AID-NME966>3.0.CO;2-A
- Zienkiewicz, O.C. and Taylor, R.L. (2000), The Finite Element Method (fifths edition), Volume 2: SolidMechanics, Butterworth-Heinemann, Oxford.
- Zienkiewicz, O.C., Xu, Z., Ling, F.Z., Samuelsson, A. and Wiberg, N.E. (1993), "Linked interpolation forReissner-Mindlin plate element: part I-a simple quadrilateral", Int. J. Numer. Meth. Eng., 36, 3043-3056. https://doi.org/10.1002/nme.1620361802
피인용 문헌
- Developments of Mindlin-Reissner Plate Elements vol.2015, 2015, https://doi.org/10.1155/2015/456740
- Application of the quadrilateral area coordinate method: a new element for laminated composite plate bending problems vol.23, pp.5, 2007, https://doi.org/10.1007/s10409-007-0088-z
- Application of the quadrilateral area co-ordinate method: a new element for Mindlin–Reissner plate vol.66, pp.1, 2006, https://doi.org/10.1002/nme.1533
- A hybrid-stress element based on Hamilton principle vol.26, pp.4, 2010, https://doi.org/10.1007/s10409-010-0352-5
- Hybrid displacement function element method: a simple hybrid-Trefftz stress element method for analysis of Mindlin-Reissner plate vol.98, pp.3, 2014, https://doi.org/10.1002/nme.4632
- A concave-admissible quadrilateral quasi-conforming plane element using B-net method vol.57, 2016, https://doi.org/10.1016/j.euromechsol.2015.12.001
- Two generalized conforming quadrilateral Mindlin–Reissner plate elements based on the displacement function vol.99, 2015, https://doi.org/10.1016/j.finel.2015.01.012
- Linear and Geometrically nonlinear analysis of plates and shells by a new refined non-conforming triangular plate/shell element vol.36, pp.5, 2005, https://doi.org/10.1007/s00466-004-0625-6