DOI QR코드

DOI QR Code

New design concept and damage assessment of large-scale cooling towers

  • Noh, Sam-Young (Institute for Structural Statics and Dynamics RWTH Aachen) ;
  • Meskouris, Konstantin (Institute for Structural Statics and Dynamics RWTH Aachen) ;
  • Harte, Reinhard (Institute for Statics and Dynamics, Bergische Universitat Wuppertal) ;
  • Kratzig, Wilfried B. (Institute for Statics and Dynamics, Ruhr-Universitat Bochum)
  • 투고 : 2002.10.04
  • 심사 : 2002.12.18
  • 발행 : 2003.01.25

초록

The motivation of this paper is to introduce the modern technology of large-scale cooling tower design. Thereby the innovative design concept for the world's largest cooling tower with a height of 200 m is briefly presented (Harte & Kr$\ddot{a}$tzig 2002, Bush et al. 2002). The new concept was considered not only for safety, but also for preservation of the durability of the structure, because cracking damage in large cooling towers in general cause extremely high cost of maintenance and repair. The paper demonstrates numerically the damage process in large cooling towers (Kr$\ddot{a}$tzig et al. 2001), and describes some basics of the numerical finite element approach for damage propagation modelling of shell structure. A prototype is analysed to trace the progressive damage process, whereby the changes in the dynamical behaviour of the structure, as mirrored in its natural frequencies and the corresponding mode shapes, are presented and discussed. Finally, the example shows that such damage processes develop progressively over the life-time of the shell structure.

키워드

참고문헌

  1. Busch, D., Harte, R., Krätzig, W.B. and Montag, U. (2002), "New natural draught cooling tower of 200 m ofheight", Eng. Struct., 24, 1509-1521. https://doi.org/10.1016/S0141-0296(02)00082-2
  2. Busch, D., Haselwander, B., Hillemeier, B. and Strauß, J. (1999), "Innovative Betontechnologie für denKühlturmbau", beton., 1999:4, 108-109.
  3. CEB 210 (1991), Behaviour and analysis of reinforced concrete structures under alternate actions inducinginelastic response-volume 1, CEB Bulletin d'Information 210 Comite Euro-International du Beton, Lausanne.
  4. Darwin, D. and Pecknold, D.A. (1974), "Inelastic model for cyclic biaxial loading of reinforced concrete", CivilEngineering Studies SRS Nr. 409, University of Illinois.
  5. Eligehausen, R., Popov, E.P. and Bertero, V.V. (1983), "Local bond stress-slip relationships of deformed barsunder generalized excitations", College of Engineering, University of California.
  6. Harte, R., Krätzig, W.B., Noh, S.-Y. and Petryna, Y.S. (2000), "On progressive damage phenomena ofstructures", Comput. Mech., 25, 404-412. https://doi.org/10.1007/s004660050487
  7. Harte, R. and Krätzig, W.B. (2002) "Large-scale cooling towers as part of an efficient and cleaner energygenerating technology", Thin-Walled Structures, 40, 651-664. https://doi.org/10.1016/S0263-8231(02)00018-6
  8. Karsan, D. and Jirsa, J.O. (1969), "Behavior of concrete under compressive loadings", J. Struct. Div., ASCE,95(ST12), 2543-2563.
  9. Kratzig, W.B., Gruber, K. and Zahlten, W. (1992), "Numerical collapse simulation of large cooling towerschecking their safety and durability", Technical Report 92-3 Ruhr-University Bochum.
  10. Kratzig, W.B. (1997), "Multi-level modelling techniques for elasto-plastic structural responses.", Owen D.R.J.,Onate E. and Hinton E. (editors). Computational plasticity, Part 1. Int. Center for Num. Meth. Engng.Barcelona, Spain, 457-468.
  11. Krätzig, W.B., Meskouris, K. and Noh, S.-Y. (2001) "On damage process of natural draught cooling towers",Eds.: W.A. Wall et al., Proc. Int. Conf. Trends in Computational Structural Mechanics, 338-347, CIMNE,Barcelona, Spain.
  12. Kreller, H. (1990), Zum nichtlinearen Trag- und Verformungsverhalten von Stahlbetonstabtragwerken unter LastundZwangeinwirkung, Deutscher Ausschuss fur Stahlbeton Heft 409.
  13. Kupfer, H.B., Hilsdorf, H.K. and Rüsch, H. (1969) "Behavior of concrete under Biaxial Stresses", ACI J., 66(8),656-666.
  14. MC 90 (1990), CEB-FIP Model CODE 1990 Design Code, Bulletin d'Information 195, Comite Euro-International du Béton, Lausanne.
  15. Menzel, W. (1996), Gemischt-hybride Elemente Formulierungen für komplexe Schalen- strukturen unterendlichen Rotationen, TWM Nr.96-4, Institut fur Konstruktiven Ingenieurbau der Ruhr-Universitat Bochum.
  16. Noh, S.-Y. (2001), Beitrag zur numerischen Analyse der Schädigungsmechanismen von Naturzugkühltürmen,Dr.-Ing. Thesis, RWTH Aachen, Germany.
  17. Noh, S.-Y., Krätzig, W.B. and Meskouris, K. (2002) "Numerical simulation of serviceability, damage evolutionand failure of reinforced concrete shells", Comput. Struct., in print.
  18. Saenz, I.P. (1964), Discussion to "Equation for the stress-strain curve of concrete by Desayi and Krishnan", ACI J., 61(9), 1229-1235.
  19. Su, X. and Zhu, B. (1994), "Algorithm for hysteresis analysis of prestressed-concrete frames", J. Struct. Eng.,120(6), 1732-1744. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:6(1732)
  20. Tue, N.V. (1993), Zur Spannungsumlagerung im Spannbeton bei der Rissbildung unter statischer undwiederholter Belastung, Deutscher Ausschuss fur Stahlbeton Heft 435.
  21. VGB-Guidelines (1997), "Structural design of cooling towers", VGB-Technical Committee Essen, Germany.

피인용 문헌

  1. Ultimate behavior of reinforced concrete cooling tower: Evaluation and comparison of design guidelines vol.22, pp.2, 2006, https://doi.org/10.12989/sem.2006.22.2.223
  2. Structural stability of concrete wind turbines and solar chimney towers exposed to dynamic wind action vol.95, pp.9-11, 2007, https://doi.org/10.1016/j.jweia.2007.01.028
  3. Evaluation of Structural Performance of Natural Draught Cooling Tower according to Shell Geometry using Wind Damage Analysis - Part I : One-shell Geometry vol.16, pp.3, 2016, https://doi.org/10.9712/KASS.2016.16.3.067
  4. Evaluation of Shell Geometry of the Natural Draught Cooling Tower using Linear Numerical Analysis vol.12, pp.3, 2012, https://doi.org/10.9712/KASS.2012.12.3.097
  5. A Global Damage Indicator Based on the Modal Parameters in the FE-Simulation of the Structures vol.250-253, pp.1662-8985, 2011, https://doi.org/10.4028/www.scientific.net/AMR.250-253.1105
  6. Structural Behaviour Evaluation of Natural Draught Cooling Towers under the Consideration of Shell-Geometric Parameters vol.284-287, pp.1662-7482, 2013, https://doi.org/10.4028/www.scientific.net/AMM.284-287.1396
  7. Evaluation of Structural Performance of Natural Draught Cooling Tower According to Shell Geometry Using Wind Damage Analysis – Part II : Two-Shell Geometry vol.17, pp.1, 2017, https://doi.org/10.9712/KASS.2017.17.1.049