참고문헌
- Busch, D., Harte, R., Krätzig, W.B. and Montag, U. (2002), "New natural draught cooling tower of 200 m ofheight", Eng. Struct., 24, 1509-1521. https://doi.org/10.1016/S0141-0296(02)00082-2
- Busch, D., Haselwander, B., Hillemeier, B. and Strauß, J. (1999), "Innovative Betontechnologie für denKühlturmbau", beton., 1999:4, 108-109.
- CEB 210 (1991), Behaviour and analysis of reinforced concrete structures under alternate actions inducinginelastic response-volume 1, CEB Bulletin d'Information 210 Comite Euro-International du Beton, Lausanne.
- Darwin, D. and Pecknold, D.A. (1974), "Inelastic model for cyclic biaxial loading of reinforced concrete", CivilEngineering Studies SRS Nr. 409, University of Illinois.
- Eligehausen, R., Popov, E.P. and Bertero, V.V. (1983), "Local bond stress-slip relationships of deformed barsunder generalized excitations", College of Engineering, University of California.
- Harte, R., Krätzig, W.B., Noh, S.-Y. and Petryna, Y.S. (2000), "On progressive damage phenomena ofstructures", Comput. Mech., 25, 404-412. https://doi.org/10.1007/s004660050487
- Harte, R. and Krätzig, W.B. (2002) "Large-scale cooling towers as part of an efficient and cleaner energygenerating technology", Thin-Walled Structures, 40, 651-664. https://doi.org/10.1016/S0263-8231(02)00018-6
- Karsan, D. and Jirsa, J.O. (1969), "Behavior of concrete under compressive loadings", J. Struct. Div., ASCE,95(ST12), 2543-2563.
- Kratzig, W.B., Gruber, K. and Zahlten, W. (1992), "Numerical collapse simulation of large cooling towerschecking their safety and durability", Technical Report 92-3 Ruhr-University Bochum.
- Kratzig, W.B. (1997), "Multi-level modelling techniques for elasto-plastic structural responses.", Owen D.R.J.,Onate E. and Hinton E. (editors). Computational plasticity, Part 1. Int. Center for Num. Meth. Engng.Barcelona, Spain, 457-468.
- Krätzig, W.B., Meskouris, K. and Noh, S.-Y. (2001) "On damage process of natural draught cooling towers",Eds.: W.A. Wall et al., Proc. Int. Conf. Trends in Computational Structural Mechanics, 338-347, CIMNE,Barcelona, Spain.
- Kreller, H. (1990), Zum nichtlinearen Trag- und Verformungsverhalten von Stahlbetonstabtragwerken unter LastundZwangeinwirkung, Deutscher Ausschuss fur Stahlbeton Heft 409.
- Kupfer, H.B., Hilsdorf, H.K. and Rüsch, H. (1969) "Behavior of concrete under Biaxial Stresses", ACI J., 66(8),656-666.
- MC 90 (1990), CEB-FIP Model CODE 1990 Design Code, Bulletin d'Information 195, Comite Euro-International du Béton, Lausanne.
- Menzel, W. (1996), Gemischt-hybride Elemente Formulierungen für komplexe Schalen- strukturen unterendlichen Rotationen, TWM Nr.96-4, Institut fur Konstruktiven Ingenieurbau der Ruhr-Universitat Bochum.
- Noh, S.-Y. (2001), Beitrag zur numerischen Analyse der Schädigungsmechanismen von Naturzugkühltürmen,Dr.-Ing. Thesis, RWTH Aachen, Germany.
- Noh, S.-Y., Krätzig, W.B. and Meskouris, K. (2002) "Numerical simulation of serviceability, damage evolutionand failure of reinforced concrete shells", Comput. Struct., in print.
- Saenz, I.P. (1964), Discussion to "Equation for the stress-strain curve of concrete by Desayi and Krishnan", ACI J., 61(9), 1229-1235.
- Su, X. and Zhu, B. (1994), "Algorithm for hysteresis analysis of prestressed-concrete frames", J. Struct. Eng.,120(6), 1732-1744. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:6(1732)
- Tue, N.V. (1993), Zur Spannungsumlagerung im Spannbeton bei der Rissbildung unter statischer undwiederholter Belastung, Deutscher Ausschuss fur Stahlbeton Heft 435.
- VGB-Guidelines (1997), "Structural design of cooling towers", VGB-Technical Committee Essen, Germany.
피인용 문헌
- Ultimate behavior of reinforced concrete cooling tower: Evaluation and comparison of design guidelines vol.22, pp.2, 2006, https://doi.org/10.12989/sem.2006.22.2.223
- Structural stability of concrete wind turbines and solar chimney towers exposed to dynamic wind action vol.95, pp.9-11, 2007, https://doi.org/10.1016/j.jweia.2007.01.028
- Evaluation of Structural Performance of Natural Draught Cooling Tower according to Shell Geometry using Wind Damage Analysis - Part I : One-shell Geometry vol.16, pp.3, 2016, https://doi.org/10.9712/KASS.2016.16.3.067
- Evaluation of Shell Geometry of the Natural Draught Cooling Tower using Linear Numerical Analysis vol.12, pp.3, 2012, https://doi.org/10.9712/KASS.2012.12.3.097
- A Global Damage Indicator Based on the Modal Parameters in the FE-Simulation of the Structures vol.250-253, pp.1662-8985, 2011, https://doi.org/10.4028/www.scientific.net/AMR.250-253.1105
- Structural Behaviour Evaluation of Natural Draught Cooling Towers under the Consideration of Shell-Geometric Parameters vol.284-287, pp.1662-7482, 2013, https://doi.org/10.4028/www.scientific.net/AMM.284-287.1396
- Evaluation of Structural Performance of Natural Draught Cooling Tower According to Shell Geometry Using Wind Damage Analysis – Part II : Two-Shell Geometry vol.17, pp.1, 2017, https://doi.org/10.9712/KASS.2017.17.1.049