Effect of Rice Vegetation and Water Management on Thrnover of Incorporated Organic Materials to Methane in a Korean Paddy Soil

논에서 시용 유기물의 메탄 전환율에 미치는 벼 식생 및 물관리의 영향

  • Shin, Yong-Kwang (Division of Agricultural Environment, National Institute of Agricultural Science and Technology) ;
  • Kim, Gun-Yeop (Division of Agricultural Environment, National Institute of Agricultural Science and Technology) ;
  • Ahn, Jong-Woong (Research Management Bureau, Rural Development Administration) ;
  • Koh, Mun-Hwan (Division of Agricultural Environment, National Institute of Agricultural Science and Technology) ;
  • Eom, Ki-Cheol (Division of Agricultural Environment, National Institute of Agricultural Science and Technology)
  • 신용광 (농업과학기술원 농업환경부) ;
  • 김건엽 (농업과학기술원 농업환경부) ;
  • 안종웅 (농촌진흥청 연구관리국) ;
  • 고문환 (농업과학기술원 농업환경부) ;
  • 엄기철 (농업과학기술원 농업환경부)
  • Received : 2003.01.20
  • Accepted : 2003.02.14
  • Published : 2003.02.28

Abstract

Turnover rate of applied rice straw and rice straw compost in a rice paddy soil under the flooding and intermittent irrigation was studied. The chambers in duplicate were either planted or unplanted with rice. For planted chambers, the turnover rate to methane under the flooding increased with freshness of organic materials applied: 14.9% for RS5 (rice straw applied in May), 9.5 % for RS2 (rice straw incorporated in February), and 4.0% for RSC (rice straw compost amended in May). Similar trend was found in turnover rate to methane under the intermittent irrigation: 9.8% for RS5, 5.5% for RS2, and 2.1% for RSC. For planted chambers, turnover rate to methane under the flooding was generally 1.64 times higher than that under the intermittent irrigation. In contrast, for unplanted chambers, the turnover rate to methane under the flooding increased with freshness of organic materials applied: 8.7% for RS5, 3.3% for RS2, and 3.0% for RSC. Similar trend was observed in chambers under the intermittent irrigation: 5.4% for RS5, 3.0% for RS2, and 1.4% for RSC. For unplanted chambers, the turnover rate to methane under the flooding was generally 1.52 times higher than that under the intermittent irrigation.

논에 볏짚과 볏짚퇴비를 시용하고 상시담수와 간단관개로 관리하면서 벼가 심긴 chamber와 벼가 심겨지지 않은 chamber에서 메탄으로 전환되는 정도를 조사하였다. 벼가 심긴 chamber에서는 상시담수에서 메탄 전환율은 시용한 유기물의 신선도에 따라서 증가하였다. 볏짚을 5월에 시용한 처리 (RS5), 볏짚을 2월에 시용한 처리 (RS2), 볏짚퇴비를 5월에 시용한 처리 (RSC)에서 전환율이 각기 14.9%, 9.5%, 4.0%였었다. 범위는 4.0% ~ 14,9 %, 평균은 9.5%였었다. 간단관개에서 전환율도 유사한 경향이었다. 간단관개한 RS5 처리, RS2 처리, RSC 처리에서 메탄으로 전환율을 각기 9.8%, 5.5%, 2.1%였었다. 범위는 2.1% ~ 9.8%, 평균은 5.8%였었다. 벼를 심은 chamber에서 상시담수에서 메탄으로 전환율은 간단관개에서 보다 1.64배 높았다. 벼를 심지 않은 chamber에서 상시담수에서 메탄 전환율은 시용한 유기물의 신선도에 따라서 증가하였다. RS5 처리 RS2 처리 RSC 처리에서 전환율이 각기 8.7%, 3.3%, 3.0%였었다. 범위는 3.0% ~ 8.7%, 평균은 5.0%였었다. 간단관개에서 전환율도 유사한 경향이었다. 간단관개한 RS5 처리, RS2 처리. RSC 처리에서 메탄 전환율을 각기 5.4%, 3.0%, 1.4 %였었다. 범위는 1.4% ~ 5.4%, 평균은 3.3%였었다. 벼를 심은 chamber에서 상시담수에서 메탄 전환율은 간단관개에서 보다 1.52배 높았다.

Keywords

References

  1. Bolle, H.J., W. Seiler, and B. Bolin. 1986. Other greenhouse gas and aerosols, and aerosols. In:The greenhouse Effect.Climate Change and Ecosystems, pp 157-198, New York
  2. Cicerone, R.J., and R.S. Oremland. 1988. Biogeochemicalaspects of atmospheric methane. Glob. Biogeochem. Cycl.2:299-327 https://doi.org/10.1029/GB002i004p00299
  3. Chidthaisong, A., and I. Watanabe. 1997. Methane formation and emission from flooded rice soil incorporated with Clabeled rice straw. Soil Biol. Biochem. 29:1173-1181 https://doi.org/10.1016/S0038-0717(97)00034-5
  4. Cicerone, and Shetter.1981. Sources of atmospheric methane: measurements in rice paddies and a discussion. J.Geophys. Res. 86:7203-7209 https://doi.org/10.1029/JC086iC08p07203
  5. Conrad, R. 1993. Mechanisms controlling methane emission from wetland rice fields. In: The Biogeochemistry of Global Change: Radiative Trace Gases (Oremland, R.S., Ed.), pp. 317-335. Chapman and Hall, New York
  6. Dannenberg, S., and R. Conrad. 1999. Effect of rice plants on methane production and rhizospheric metabolism in paddy soil. Biogeochem. 45:53-71
  7. Holzapfel-Pschorn, A., R. Conrad, and W. Seiler. 1986. Effects of vegetation on the emission of methane from submerged paddy soil. Plant Soil 92:223-233 https://doi.org/10.1007/BF02372636
  8. Itou, J., and K. Kimura. 1989. Composition of gases evolved from paddy field of gley soil in Hokuriku District in Japan.Soil Sci. Plant Nutr. 60:116-121
  9. Kimura, M., Y. Miura, A. Watanabe, T. Katoh. and H. Haraguchi. 1991. Methane emission from paddy field. 1. Effect of fertilization, growth stage and midsummer drainage in pot experiment. Environ. Sci. 4:265-271
  10. Kimura, M., Y. Miura, A. Watanabe, J. Murase, and S. Kuwatsuka. 1992. Methane production and its fate in paddy fields. I. Effects of rice straw application and percolation rate on the leaching of methane and other soil componentsinto the subsoil. Soil Sci. Plant Nutr. 38(4):665-672 https://doi.org/10.1080/00380768.1992.10416696
  11. Minoda, T., M. Kimura, and E. Wada. 1996. Photosynthates as dominant source of $CH_{4}$ and $CO_{2}$ in soil water and $CH_{4}$ https://doi.org/10.1029/96JD01710
  12. Murase, J., M. Kimura, and S. Kuwatsuka. 1993. Methane production and its fate in paddy fields. ID. Effects of percolation on methane flux distribution to the atmosphere and the subsoil. Soil Sci. Plant Nutr. 39(1): 63-70 https://doi.org/10.1080/00380768.1993.10416975
  13. Neue, H.U. 1985. Organic matter dynamics in wetland soils. In Wetland Soils: characterization, classification, and utilization. pp. 109-122. IRRI, Los Banos
  14. Neue, H.U., and R.L. Sass. 1994. Trace gas emissions from rice fields. In: Global Atmospheric-Biospheric Chemistry (Prinn, R.G., Ed.), PP. 119-147. Plenum, New York
  15. Neue, H.U., R. Wassmann, H.K. Kludz, B. Wang, and R.S. Lantin. 1997. Factors and processes controlling methaneemissions from rice fields. Nutr. Cycl. in Agroecosys.49:111-117 https://doi.org/10.1023/A:1009714526204
  16. Prinn, R. G. 1994. Global atmospheric-biospheric chemistry. In: Global Atmospheric-Biospheric Chemistry (Prinn, R.G., Ed.), pp. 1-18. Plenum, New York
  17. Rasmussen, R.A., and M.A.K. Khalil. 1986. Atmospheric trace gases: Trends and distribution over the last decade. Science 32:1623-1624
  18. Schutz, H., A. Holzapfel-Pschorn, R. Conrad, H. Rennenberg, and W. Seiler. 1989. A three-year continuous record on the influence of daytime season and fertilizer treatment on methane emission rates from an Italian rice paddy field. J. Geophys. Res. 94:16405-16416 https://doi.org/10.1029/JD094iD13p16405
  19. Seiler, W., A. Holzapfel-Pschorn, R. Conrad, and D. Scharffe. 1984. Methane emission from rice paddies. J. Atmos. Chem. 1:241-268 https://doi.org/10.1007/BF00058731
  20. Shin, Y.K., Y.S. Lee, S.H. Yun, and M.E. Park. 1995. A simplified closed static chamber method for measuring methane flux in paddy soils. J. Korean Soc. Soil Sci. Fert. 28:183-190
  21. Shin, Y.K., S.H. Yun, M.E. Park, and B.L. Lee. 1996. Mitigation options for methane emission from rice fields in Korea. Ambio 25(4): 289-291
  22. Shin, Y.K., and S.H. Yun. 2000. Varietal differences in methane emission from Korean rice cultivars. Nutr. Cycl. in Agroecosys. 58:315-319 https://doi.org/10.1023/A:1009819324897
  23. Thompson A.M., and R.J. Cicerone. 1986. Possible perturbations to atmospheric CO, $CH_{4}$ and OH. J. Geophys Res. 91(D): 10858-10864
  24. Uzaki, M., H. Mizutani, and E. Wada. 1991. Carbon isotope composition of $CH_{4}$ from rice paddies in Japan. Biogeochem. 13:159-175
  25. Wassmann, R., H.U. Neue, C. Bueno, R.S. Lantin, M.C.R. Alberto, L.V. Buendia, K. Bronson H. Papen, and H. Rennenberg. 1998. Methane production capacities of different rice soils derived from inherent and exogenous substrates. Plant Soil 203:227-237 https://doi.org/10.1023/A:1004357411814
  26. Watanabe, A., M. Yoshida, and M. Kimura. 1998. Contribution of rice straw carbon to $CH_{4}$ emission form rice paddies using C-enriched rice straw, J. Geophys. Res. 103:8237-8242 https://doi.org/10.1029/97JD03460
  27. Yagi, K., K. Minami, and Y. Ogawa. 1990. Effects of water percolation on methane emission from paddy fields. Res. Div. Environ. Planning, 6:105-112