Effect of Precipitate on the Electrochemical Potentiokinetic Reactivation Behaviors of Stainless Steels and Nickel Base Alloys

  • Wu, Tsung-Feng (Department of Materia ls Science and Engineering National Cheng Kung University) ;
  • Chen, Tzu-Sheng (Department of Materia ls Science and Engineering National Cheng Kung University) ;
  • Tsai, Wen-Ta (Department of Materia ls Science and Engineering National Cheng Kung University)
  • 발행 : 2003.04.01

초록

Electrochemical potentiokinetic reactivation (EPR) tests are used to evaluate the degree of sensitization (DOS) of stainless steels and nickel base alloys. The validity of EPR test to detect DOS of these alloys, however, depends all the electrolyte composition employed. The existence of precipitates such as NbC, and TiC, etc. in the alloys also affects the reactivation behaviors of these alloys. In this investigation, the reactions involved during EPR processes are analyzed. In 0.5 M $H_2SO_4$+ 0.01 M KSCN electrolyte, a reactivation peak associated with the localized attack around NbC, different from that of intergranular corrosion, is observed for the solution annealed 347 SS. For solution annealed Alloy 600, matrix corrosion and localized attack around TiC with distinct anodic peaks appeared in the EPR curves are seen in the $H_2SO_4$+ KSCN electrolyte. With proper adjustment of elect rolyte composition, the contribution from intergranular corrosion, as a result of chromium carbide precipitation along the grain boundaries, can be distingui shed from the matrix and localized corrosion for the sensitized Alloy 600.

키워드

참고문헌

  1. M. Prazak. Corrosion. 19. 75t (1963)
  2. F. Duffaut. J. P. Pouzet. and P. Lacombe. Carras. Sci ., 6, 83 (1966)
  3. P. Novak, R. Stcfcc, and F. Franz, Corrosion, 31. 344(1975)
  4. R. L. Cowan and C. S. Tedmon Jr., Adv. Corros. Sci. and Technol., 3, 193 (1973)
  5. C. S. Pande, M. Sucnaga, B. Vyas. H. S. Isaacs, and D. F. Harling. Scr. Metall,11, 681 (1977)
  6. W. L. Clarke, R. L. Cowan. and W. L Walker, Intergranular Corrosion of Stain less Alloys. ASTM STP 656, R. F. Steigerwald, Editor, ASTM. Phila delphia. Pennsylvania, 99 (1978)
  7. W. L. Clarke and D. C. Carlson, Mater. Peform. 19, 16 (1980)
  8. N. B. Gegelova, Zashch. Met., 8. 420 ( 1971)
  9. L.A. Medvedeva, V. M. Knyazheva, Ya. M. Kolotyrkin, and S. G. Babich. Zoshch. Met., 11. 699 (1975)
  10. Annual Book of ASTM Standards G 108. ASTM, Philadelphia. Pennsylvania, 450 (1994)
  11. Annual Book of JIS Standards G 0580, JIS, Tokyo, Japa n, (1993)
  12. A. Roelandt and J. Vereecken. Corrosion, 42, 189 (1986)
  13. A. Mignone, A. Borello, and A. La Barbera, Corrosion, 38, 390 (1981)
  14. G. L Edgemon. M. Marek. D. F. Wilson. and G. E. C. Bell. Corrosion, 50, 912 (1994)
  15. Tseng-Feng Wu, Tzu-Ping Chen, and Wen-Ta Tsai, J. Nuclear Materials, 295. 233 (2001)
  16. Annual Book of ASTM Standards. Designation A 262 Practice A, ASTM, Philadelphia, Pennsylvania, 43 (1993)
  17. G. P. Airey, A. R. Vaia, N. Pessall, and R. G. Aspdcn, J. Met., 33, 28 (1981)
  18. E. L. Hall and C. L. Briant. Metall . Mater. Trans., A 16A, 1225 (1985)
  19. D. R. Johns and F. R. Beckitt. Corros. Sci., 30, 223(1990)
  20. A. P. Majidi and M. A. Streicher, Corrosion, 40, 393(1986)