DOI QR코드

DOI QR Code

Computation of structural intensity for plates with multiple cutouts

  • Khun, M.S. (Department of Mechanical Engineering, National University of Singapore) ;
  • Lee, H.P. (Department of Mechanical Engineering, National University of Singapore) ;
  • Lim, S.P. (Department of Mechanical Engineering, National University of Singapore)
  • 투고 : 2003.05.20
  • 심사 : 2003.08.06
  • 발행 : 2003.11.25

초록

The structural intensity fields of rectangular plates with single cutout and multiple cutouts are studied. The main objective is to examine the effect of the presence of cutouts on the flow pattern of vibrational energy from the source to the sink on a rectangular plate. The computation of the structural intensity is carried out using the finite element method. The magnitude of energy flow is significantly larger at the edges on the plate near the cutout boundary parallel to the energy flow. The effects of cutouts with different shape and size at different positions on structural intensity of a rectangular plate are presented and discussed. A case study on a plate with two cutouts is also presented.

키워드

참고문헌

  1. ABAQUS (2001), User's Manuals, Version 6.2-1, Hibbitt, Karlsson and Sorensen, Inc., USA.
  2. Alfredsson, K.S. (1997), "Active and reactive structural intensity flow", J. Vib. Acoust., 119, 70-79. https://doi.org/10.1115/1.2889689
  3. Freschi, A.A., Pereira, A.K.A., Ahmida, K.M., Frejlich, J. and Arruda, J.R.F. (2000), "Analyzing the total structural intensity in beams using a homodyne laser doppler vibrometer", Shock Vib., 7, 299-308. https://doi.org/10.1155/2000/952482
  4. Gavric, L. and Pavic, G. (1993), "A finite element method for computation of structural intensity by the normal mode approach", J. Sound Vib., 164, 29-43. https://doi.org/10.1006/jsvi.1993.1194
  5. Gavric, L., Carlsson, U. and Feng, L. (1997), "Measurement of structural intensity using a normal mode approach", J. Sound Vib., 206, 87-101. https://doi.org/10.1006/jsvi.1997.1077
  6. Hambric, S.A. (1990), "Power flow and mechanical intensity calculations in structural finite element analysis", J. Vib. Acoust., 112, 542-549. https://doi.org/10.1115/1.2930140
  7. Hambric, S.A. and Szwerc, R.P. (1999), "Prediction of structural intensity fields using solid finite element", Noise Control Eng. J., 47, 209-217. https://doi.org/10.3397/1.599317
  8. Larrondo, H.A., Avalos, D.R., Laura, P.A.A. and Rossi, R.E. (2001), "Vibration of simply supported rectangular plates with varying thickness and same aspect ratio cutouts", J. Sound Vib., 244, 738-745. https://doi.org/10.1006/jsvi.2000.3492
  9. Laura, P.A.A., Romanelli, E. and Rossi, R.E. (1997), "Transverse vibrations of simply supported rectangular plates with rectangular cutouts", J. Sound Vib., 202, 275-283. https://doi.org/10.1006/jsvi.1996.0703
  10. Lee, H.P., Lim, S.P. and Chow, S.T. (1990), "Prediction of natural frequencies of rectangular plates with rectangular cutouts", Comput. Struct., 36, 861-869. https://doi.org/10.1016/0045-7949(90)90157-W
  11. Lee, H.P., Lim, S.P. and Chow, S.T. (1992), "Effect of transverse shear deformation and rotary inertia on the natural frequencies of rectangular plates with cutouts", Int. J. Solids Struct., 29, 1351-1359. https://doi.org/10.1016/0020-7683(92)90083-6
  12. Li, Y.J. and Lai, J.C.S. (2000), "Prediction of surface mobility of a finite plate with uniform force excitation by structural intensity", Appl. Acoust., 60, 371-383. https://doi.org/10.1016/S0003-682X(99)00043-2
  13. Noiseux, D.U. (1970), "Measurement of power flow in uniform beams and plates", J. Acoust. Soc. Am., 47, 238-247. https://doi.org/10.1121/1.1911472
  14. Pascal, J.-C., Loyau, T. and Carniel, X. (1993), "Complete determination of structural intensity in plates using laser vibrometers", J. Sound Vib., 161, 527-531. https://doi.org/10.1006/jsvi.1993.1090
  15. Pascal, J.-C., Carniel, X., Chalvidan, V. and Smigielski, P. (1996), "Determination of phase and magnitude of vibration for energy flow measurements in a plate using holographic interferometry", Opt. Lasers Eng., 25, 343-360. https://doi.org/10.1016/0143-8166(95)00080-1
  16. Pavic, G. (1976), "Measurement of structure borne wave intensity, part I: formulation of the methods", J. Sound Vib., 49, 221-230. https://doi.org/10.1016/0022-460X(76)90498-3
  17. Pavic, G. (1987), "Structural surface intensity: An alternative approach in vibration analysis and diagnosis", J. Sound Vib., 115, 405-422. https://doi.org/10.1016/0022-460X(87)90286-0
  18. Rook, T.E. and Singh, R.H. (1998), "Structural intensity calculation for compliant plate-beam structures connected by bearings", J. Sound Vib., 211, 365-387. https://doi.org/10.1006/jsvi.1996.1314
  19. Sahu, S.K. and Datta, P.K. (2002), "Dynamic stability of curved panels with cutouts", J. Sound Vib., 251, 683-696. https://doi.org/10.1006/jsvi.2001.3961
  20. Shanmugam, N.E., Lian, V.T. and Thevendran, V. (2002), "Finite element modelling of plate girders with web openings", Thin-Walled Structures, 40, 443-464. https://doi.org/10.1016/S0263-8231(02)00008-3
  21. Verheij, J.W. (1980), "Cross-spectral density methods for measuring structure borne power flow on beams and pipes", J. Sound Vib., 70(1), 133-138. https://doi.org/10.1016/0022-460X(80)90559-3