습식 및 건식법에 의한 모의 사용후핵연료의 O/M비 측정

The measurement of oxygen and metal ratio of simulated spent fuels by wet and dry chemical analysis

  • 최계천 (한국원자력연구소, 원자력화학연구팀) ;
  • 이창헌 (한국원자력연구소, 원자력화학연구팀) ;
  • 김원호 (한국원자력연구소, 원자력화학연구팀)
  • 투고 : 2003.02.04
  • 심사 : 2003.03.28
  • 발행 : 2003.04.25

초록

고온 건식공정의 사용후핵연료 산화분말 ($U_3O_8$)과 경 중수로 연계 핵연료 제조공정의 $UO_2$ 소결체 물성 이해에 필요한 Oxygen/Metal 비를 습식 및 건식 분석방법으로 측정하였다. $UO_2$ 분말에 핵분열생성물 원소의 산화물을 일정량 첨가하고 $1,700^{\circ}C$의 수소분위기에서 소결시켜 20,000~60,000 MWd/MtU 연소도 범위의 사용후핵연료와 화학조성이 유사한 모의 사용후핵연료를 제조하였다. 습식법에 의한 O/M 비 측정을 위하여 혼합산 (10 M HCl : 8 M $HNO_3$, 2.5:1 V/V)에 의한 가압산분해법으로 모의 사용후핵연료를 용해하고 우라늄과 핵분열생성물 원소를 추출 크로마토그래피로 분리한 후 금속원소의 총량을 유도결합플라스마 원자방출분광분석법으로 결정하였다. 또한 $UO_2$가 산화될 때의 무게변화를 열중량 무게분석법 (thermogravimetric)으로 측정하여 O/M비를 계산하고 습식법으로 얻은 결과와 비교하였다. $Mo_{0.4}-Ru_{0.4}-Rh_{0.1}-Pd_{0.1}$ 합금이 O/M비 측정에 미치는 영향을 조사하였다.

Oxygen to metal ratio has been measured by wet and dry chemical analysis to study the properties of sintered $UO_2$ pellets and $U_3O_8$ in the lithium reduction process of spent pressurized water reactor fuels. Uranium dioxide pellets simulated for the spent PWR fuels with burnup values of 20,000~60,000 MWd/MtU were prepared by mixing $UO_2$ powder and oxides of fission product elements, pelleting the powder mixture and sintering it at $1,700^{\circ}C$ under a hydrogen atmosphere. For wet chemical analysis, the simulated spent fuels were dissolved with mixed acid (10 M HCl : 8 M $HNO_3$, 2.5 : 1, v/v) using acid digestion bomb technique. The total amount of uranium and fission products added in the simulated spent fuels were measured using inductively coupled plasma atomic emission spectrometry. Weight change of the simulated fuel during its oxydation was measured by thermogravimetry and then the O/M ratio result was compared to that obtained by wet chemical analysis. Influence of $Mo_{0.4}-Ru_{0.4}-Rh_{0.1}-Pd_{0.1}$, quaternary alloy, on the determination of O/M ratio was investigated.

키워드

참고문헌

  1. Nucl. Tech. v.18 M.D.Freshly
  2. Nucl. Tech. v.88 Sadamu Sawai;Yoneuke Iwakoshi
  3. Nucl. Tech. v.106 Didier Hass;Alain Vandergheynst
  4. KAERI/RR-1371/93 Development of fabrication technology for the future nuclear fuel 이영우(외)
  5. Nucl. Tech. v.84 Todbk;Campbell;Edgar robert;Gilbert;Cheryl knox thornhill;Bernard J.Wrona
  6. Journal of Nuclear Materials v.230 no.3 The effect of fission products on the rate of U3O8 formation in SIMFUEL oxidized in air at 250oC Joung won Choi;R.J.McEachern;P.Taylor https://doi.org/10.1016/0022-3115(96)80022-5
  7. Journal of Nuclear Materials v.254 no.2-3 R.J.McEachern;P.Taylor https://doi.org/10.1016/S0022-3115(97)00343-7
  8. Journal of Nuclear Materials v.78 no.1 Characterization of deposits on inside surfaces of lwr cladding D.Cubiccotti;J.E.Sanecki https://doi.org/10.1016/0022-3115(78)90508-1
  9. Proceedings of sysposium on analytical methods in the nuclear fuel cycle held by the IAEA in vienna, The analysis of nuclear fuels C.F.Metz;G.R.Waterbury
  10. IAEA-SM-149/23 Oxygen/Metal ratios in Pu/U oxide fuels I.R.Mcgowan;C.R.Johnon;K.a.Swinburn
  11. AERE-R6962 The determination of oxygen-metal ratio in uranium and uranium-plutonium dioxides I.G.Jones
  12. Journal of Nuclear Materials v.131 no.2-3 H.Kleykamp https://doi.org/10.1016/0022-3115(85)90460-X
  13. Analytica Chimica Acta v.339 no.3 A chelating resin containing 4-(2-thiazolylazo)resorcinol as the functional group Synthesis and sorption behaviour for trace metal ions C.H.Lee;J.S.Kim;M.Y.Suh;W.Lee https://doi.org/10.1016/S0003-2670(96)00461-8