Determination of Li generated from 10B(n·α)7Li reaction in Boric acid solution

붕산수용액에서 10B(n·α)7Li 핵반응에 의해 생성된 Li 정량

  • 최계천 (한국원자력연구소, 원자력화학연구부) ;
  • 정용주 (한국원자력연구소, 원자력화학연구부) ;
  • 연제원 (한국원자력연구소, 원자력화학연구부) ;
  • 김원호 (한국원자력연구소, 원자력화학연구부)
  • Received : 2003.09.18
  • Accepted : 2003.11.27
  • Published : 2003.12.25

Abstract

Thermal neutron irradiation experiment of boric acid solution was carried out using HANARO in following three conditions: (A) $^{10}B$ concentration = $203.0{\mu}g/mL$, irradiation time = 1 hr; (B) $^{10}B$ concentration = $381.4{\mu}g/mL$, irradiation time = 1 hr; (C) $^{10}B$ concentration = $381.4{\mu}g/mL$, irradiation time = 0.5 hr. The amount of lithium produced from $^{10}B(n{\cdot}{\alpha})^7Li$ reaction which was generated on neutron irradiation, was measured by flameless atomic absorption spectroscopy. The concentration of $^7Li$ measured in the three experiments was $0.18{\mu}g/mL$ (78.3% of theoretical value, $0.23{\mu}g/mL$) in (A), $0.31{\mu}g/mL$ (70.5% of theoretical value, $0.44{\mu}g/mL$) in (B) and $0.16{\mu}g/mL$ (71.6% of theoretical value, $0.22{\mu}g/mL$) in (C). The pH value of irradiated boric acid was shifted to considerably low. It is estimated that boric acid would be transformed into the polyborate fonn, by radiolysis products of water, which has high dissociation constant.

붕산수에 대한 열중성자 (thermal neutron) 조사실험을 하나로를 이용하여 다음과 같은 세가지 조건에서 수행하였다: (A) $^{10}B$ 농도 = $203.0{\mu}g/mL$, 조사시간 = 1 시간; (B) $^{10}B$ 농도 = $381.4{\mu}g/mL$, 조사시간 = 1 시간; (C) $^{10}B$ 농도 = $381.4{\mu}g/mL$, 조사시간 = 0.5 시간. 열중성자 조사 시 발생하는 핵반응 [$^{10}B(n{\cdot}{\alpha})^7Li$]으로부터 생성된 $^7Li$의 양은 불꽃 없는 원자흡수분광분석법 (flameless atomic absorption spectroscopy)으로 측정하였다. (A), (B), (C) 실험에서 측정된 $^7Li$의 농도는 각각 0.18 (이론치 = 0.23), 0.31 (이론치 = 0.44), 0.16 (이론치 = 0.22) ${\mu}g/mL$로 이 값들은 각각 이론치의 78.3, 70.5, 71.6%에 해당한다 중성자 조사 후 붕산수의 pH는 조사 전의 값에 비하여 상당히 낮은 값을 보였다. 이는 물의 방사분해물의 영향으로 붕산수가 해리도가 큰 polyborate 형태로 전이되기 때문으로 판단된다.

Keywords

References

  1. R. L. Cowan, Independent Consultanl, Livermore CA and C. J. Wood, EPRI, Palo Alto CA, 'Control of Radiation Fields in BWRs After Noble Metal Chemical Addition,' Chimie 2002, Avignon France, 22-26. 2002.
  2. R. S. Lillard, D. L. Pile, D. P. Butt, Journal of Nucl.ear Materials, 278, 277-289 (2000).
  3. Chien C. Lin, F. R. Smith, R. L. Cowan, Nuclear Engineering and Design, 166, 31-36(1996).
  4. M. Domae, N. Chitose, Z. Zuo, Y. Katsurnura, Radiation Physics and Chemistry, 56, 315-322 (1999).
  5. W. S. Walters, J. D. Page, A. P. Gaffka, A. F. Kingsbury, J. Foster, A. Anderson, D. Wicken, J. Henshaw, 'The effect of zinc addition on PWR corrosion product deposition on Zircaloy-4', Chimie 2002, Avignon France, 22-26, 2002.
  6. B. Stellwag, Framatome Anp Gmbh, M. Juergensen, Kernkraftwerk Biblis, 'Zinc Injection in German PWR Plants', Chimie 2002, Avignon France, 22-26, 2002.
  7. Francis Nordmann, Jean-Marie Fiquet, Nuclear Engineering and Design, 160, 193-201(1996).
  8. P. A. Dokhale, V. N. Bhoraskar, P. R. Vijayaraghavan, Materials Science and Engineering, B 57, 1-8(1998).
  9. X. Deschanels, D. Simeone, J. P. Bonal, Journal of Nuclear Materials, 265, 321-324(1999).
  10. B. Pastina, J. Isabey, B. Hickel., Journal of Nuclear Materials, 264, 309-318(1999).
  11. S. Anthoni, CEA-CEN Cadarache, France, 'Effects of pH of primary coolant on PWR contamination', Water Chemistry of Nuclear reactor systems 6. BNES, London, (1992).
  12. J. A. Sawicki, 'Nuclear Chemistry Model of Borated Fuel Crud', Chimie 2002, Avignon France, 11-13(2002).
  13. D. Stetten, Jr., Anal.Chem, 23. 1177-1178(1951).