Fine Structure of the Heart Tube and Its Cardiac Muscle Cells in the Spider, Araneus ventricosus

산왕거미 (Araneus ventricosus) 심관과 심근세포의 미세구조

  • 최재영 (단국대학교 첨단과학부 생물학) ;
  • 문명진 (단국대학교 첨단과학부 생물학)
  • Published : 2003.12.01

Abstract

Fine structural characteristics of the heart tube and its cardiac muscle cells in spider, Araneus ventricosus are investigated by both of scanning and transmission electron microscopes. The heart tube of the spider is extended mid-dorsally along the anterior part of the abdomen, and is consisted of the thin outer layer of connective tissue (epicardium) and the thick muscle layer (myocardium). The myocardium in the spider has a typical fanlike spiral structure toward anterior part put across between the muscle fibers. Therefore, it did not give rise to the intima, and muscle cells are in direct contact to the hemolymph. The heart tube appeared to be three pairs of ostia and numerous hemocytes accumulated at the inner surface of the myocardial layer. Among several kinds of the hemocytes, the oenocytoids are the most predominant hemocytes accumulated along the myocardial folds which stretched toward heart lumen. The heart muscle cells are cross striated, branched, and multinucleated. They contain a lot of mitochondria, which provide for the continuous energy demands of the heart. Thread-like ganglion on the dorsal side of the heart tube gives off axons that innervate the heart muscle cells.

왕거미과 산왕거미(Araneus ventricosus)의 심관과 심근세포의 미세구조적 특성을 주사형 및 투과형 전자현미경으로 관찰하였다. 거미의 심관은 복부마디의 등쪽에 분포되어 있고, 심외막과 심근층으로 구성되어 있었다. 심근층의 근섬유들은 종축을 중심으로 나선상의 배열을 이루고 있었고, 내막이 없이 혈림프에 직접 노출되는 구조를 이루고 있었다. 심관의 외부 표면에서는 3쌍의 심문이 형성되어 있었고, 내강에서는 원형질혈구와 과립혈구, 그리고 편도혈구 등 다양한 유형의 혈구들이 관찰되었다. 특히 심관의 내강을 향해 돌출된 심근돌기 주위에서는 편도혈구들이 대부분을 차지하고 있었다. 편도혈구의 세포질에는 유리 리보조옴이 산재되어 있었고 핵에는 이질염색질과 인이 발달되어 있었으나, 심근층 조직과의 특이한 연접은 관찰되지 않았다. 심근층에는 횡문이 형성되어 있었고, Z-line을 중심으로 근절의 구조를 이룬 근원섬유의 주위에서는 미토콘드리아와 근소포체가 풍부하게 함유되어 있었다. 심관의 배면을 따라 뻗은 신경절의 축삭들이 심근세포와 신경근육간 연접부를 형성하고 있음이 관찰되었다.

Keywords

References

  1. Angioy AM, Boassa D, Dulcis D: FWlctional morphology of the dorsal vessel in the adult fly Protophormia terraenovae (Diptera: Calliphoridae), J Morphol 240: 15 31,1999 https://doi.org/10.1002/(SICI)1097-4687(199904)240:1<15::AID-JMOR2>3.0.CO;2-K
  2. Bolm H: Differential adhesion of the haemocytes of Leucophaea maderae (Blattaria) to a glass surface, J Insect Physiol 23 : 185 194, 1977 https://doi.org/10.1016/0022-1910(77)90028-2
  3. Browning HC: The integument and moult cycle of Tegenaria atrica(Araneae), Proc Roy Soc London B 131 : 65 86, 1942 https://doi.org/10.1098/rspb.1942.0018
  4. Chain BM, Anderson RS: Selective depletion of the plasmatocyles in Galleria mellonella following injection of bacteria, J Insect Physiol 28 : 377 384, 1982 https://doi.org/10.1016/0022-1910(82)90051-8
  5. Chang BS, Yoe SM: Electron microscopic study on the hemocyles of the wolf spider, Pardosa astrigera, Kor J Electr Microsc 25: 29 38,1995
  6. Cohnorgen M, Paul RJ: Imaging of physiologycal functions in transparent animals (Agonus cataphractus, Daphnia mangna, Fholcus phalangioides) by video microscopy and digital image processing, Comp Biochem Physiol 111 583 607, 1995 https://doi.org/10.1016/0300-9629(95)00059-G
  7. Deevey GB: The blood cells of the Haitian tarantula and their relation to the mounting cycle, J Morphol 68 : 457 451, 1941 https://doi.org/10.1002/jmor.1050680303
  8. Fahrenbach WH: The cyanoblast: hemocyanin formation in Limulus pofyphemus, J Cell Biol 44 :445 453, 1970 https://doi.org/10.1083/jcb.44.2.445
  9. Foelix RF: Biology of Spiders (2nd ed), Oxford Univ Press, London, pp, 52 67, 1996
  10. Groome JR, Townley MA, Detschaschell M, Tillinghast EK: Detection and isolation ofproctolin lilce immounoreactivity in arachnids: Possible cardioregulatory role for proctolin in the orb weaving spiders Argiope and Araneus, J Insect Physiol 37: 9 19,1991 https://doi.org/10.1016/0022-1910(91)90013-P
  11. Gupta AP: Hemocyte types: their structures, synonymies interrelationships, and taxonomic significance, In: Insect Hemocytes, Gupta AP (ed), Cambridge Univ Press, Cambridge, pp, 85 127,1979
  12. Karnovsky MJ: A formaldehyde glutaraldehyde fixative of high osmolality for use in electron microscopy, J Cell Biol 27: 137 138,1965
  13. Midttun B, Jensen H: Ultrastructure of oenocytoids from two spiders, Fisaura mirabilis and Trochosa tenicola (Araneae), Acta Zool 59: 157 167,1978 https://doi.org/10.1111/j.1463-6395.1978.tb01031.x
  14. Millot J: Ouire des araneides (Araneae), In: Traite de Zoologie, Grasse P(ed), Masson, Paris,pp, 639 646,1949
  15. Paul RJ: La respiration des arachnides, La Recherche 226 : 1338 1357,1990
  16. Peake PW: Isolation and characterization of the haemocytes of Calliphora vicina on density gradients of Ficoll. J Insect Physiol 25 : 795 803,1979 https://doi.org/10.1016/0022-1910(79)90082-9
  17. Petrunkevitch A: An inquiry into the natural classification of spiders, based on a study of their internal anatomy, Trans Connect Acad Arts Sci 31: 299 389,1933
  18. Renwrantz LR, Mead GP, Ratcliffe NA: The separation of insect haBmocyte types on percoll gradients: methodology and problems, J Insect Physiol 32: 167 177, 1986 https://doi.org/10.1016/0022-1910(86)90137-X
  19. Sherman RG: Ultrastructurally different hemocytes in a spider, Can J Zool 51:1155 1165, 1973 https://doi.org/10.1139/z73-167
  20. Sherman RG, Pax RA: The heartbeat of the spider, Geolycosa missouriensis, Comp Biochem Physiol 26 : 529 538,1968 https://doi.org/10.1016/0010-406X(68)90645-2