Synthesis and Characterization of $In_2O_3$ Nanowires in a Wet Oxidizing Environment

습식 산화 분위기에서의 산화 인듐 나노선의 합성 및 구조적 특성

  • Jeong, Jong-Seok (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Young-Heon (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Jeong-Yong (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • 정종석 (한국과학기술원 재료공학과) ;
  • 김영헌 (한국과학기술원 재료공학과) ;
  • 이정용 (한국과학기술원 재료공학과)
  • Published : 2003.03.01

Abstract

Indium oxide ($In_2O_3$) nanowires were successfully synthesized by a simple reaction in a wet oxidizing environment at low temperature without metal catalyst. The nanowires were characterized by an x-ray diffraction (XRD), a scanning electron microscopy (SEM) equipped with an energy dispersive spectrometry (EDS), and a transmission electron microscopy (TEM). It was shown that the $In_2O_3$ nanowires were two types of morphology, uniform nanowires and nanowires containing $In_2O_3$ nanoparticles in its stem. It was found that lengths of the nanowires were ranges of several micrometers and their diameters were around $10{\sim}250$ nm. The growth direction of the nanowires was investigated and their growth mechanism is also discussed.

습식 산화 분위기에서 vapor-solid process를 통해 금속 촉매를 사용하지 않고도 낮은 온도에서 산화 인듐나노선을 성공적으로 합성하였다. 나노선은 x-선 회절(XRD), 분산 x-선 분광 분석기(EDS)를 갖춘 주사전자현미경(SEM), 투과전자현미경(TEM)을 통해 분석되었다. XRD 결과는 합성된 산화 인듐 나노선이 입방정 구조를 갖는다는 것을 보여준다. 이러한 나노선들은 두 가지 형태를 갖는다. 하나는 줄기에 약 500 nm 크기의 각진 나노입자가 형성된 형태이고 다른 하나는 나노입자가 형성되지 않은 형태이다. 나노선의 길이는 수 마이크로미터 범위이고, 두께는 약 10 nm에서 250 nm 범위이다. 나노선은 결함을 포함하지 않았으며 표면에 5 nm 이하의 비정질 층을 가지고 있었다. TEM 분석 결과 대부분의 나노선의 성장 방향은 <100> 방향이었으나 나노입자를 포함한 나노선은 <110> 방향으로 자랐다는 것이 발견되었다. 이러한 성장 방향은 이전의 문헌에서 보고되지 않은 새로운 결과이다. 일반적인 성장 방향과는 다른 새로운 방향으로 나노선이 자랄 수 있었던 것은 본 연구에서 산화물 합성 시 산소의 공급원으로 사용된 습식 분위기와 비교적 낮은 온도가 원인인 것으로 생각된다. 따라서 습식 산화 분위기에서의 나노선 합성법을 다른 여러 산화물의 나노선 합성에 응용한다면 낮은 온도에서 새로운 형태 및 성장 방향을 갖는 나노선을 얻을 수 있을 것으로 예상된다.

Keywords

References

  1. Bai ZG, Yu DP, Zhang HZ, Ding Y, Gal XZ, Hang QL, Xiong GC, Feng SQ: Nano scale GeO2 wires synthesized by physical evaporation, Chern Phys Lett 303 : 311 314, 1999 https://doi.org/10.1016/S0009-2614(99)00066-4
  2. Bhat VK, Pattabiraman M, Bhat KN, Subrahmanyam A: The growth of ultrathin oxides of silicon by low temperature wet oxidation technique, Mater Res Bull 34 : 1797 1803, 1999 https://doi.org/10.1016/S0025-5408(99)00158-0
  3. Choi YC, Kim WS, Park YS, Lee SM, Bae OJ, Lee YH, Park GS, Choi WB, Lee NS, Kim JM: Catalytic growth of $\beta$ Ga2O3, nanowires by arc discharge, Adv Mater 12: 746 750, 2000 https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<746::AID-ADMA746>3.0.CO;2-N
  4. Galasso FS: Structure and properties of inorganic solid, Per-gamonpress, NewYork,pp,99 102, 1970
  5. Han WQ, Fan SS, Li QQ, Hu YO: Synthesis of gallium nitride nanorods through a carbon nanotube confined reaction, Science 277: 1287 1289, 1997 https://doi.org/10.1126/science.277.5330.1287
  6. Han WQ, Kohler Redlich P, Ernst F, Ruhle M: Growth and icrostructure of Ga2O3, nanorods, Solid State Comm 115 : 527 529, 2000 https://doi.org/10.1016/S0038-1098(00)00238-6
  7. Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang P: Catalytic growth of zinc oxide nanowires by vapor transport, AdvMater 13 : 113 116, 2001
  8. Iijima S: Helical microtubules of graphitic carbon, Nature 354: 56 58, 1991 https://doi.org/10.1038/354056a0
  9. Jia HQ, Chen H, Wang WC, Wang wx, Li W, Huang Q, Zhou J: The study thennal stability during wet oxidation of AlAs, J Crystal Growth 223: 484 488, 2001 https://doi.org/10.1016/S0022-0248(01)00647-9
  10. Liang CH, Meng GW, Lei Y, Phillipp F, Zhang L: Catalytic growth of semiconducting In2O3, nanofibers, Adv Mater 13 : 1330 1333, 2001 https://doi.org/10.1002/1521-4095(200109)13:17<1330::AID-ADMA1330>3.0.CO;2-6
  11. Pan ZW, Dai ZR, Wang ZL: Nanobelts of semiconducting oxides, Science 291: 1947 1949, 2001 https://doi.org/10.1126/science.1058120
  12. Shi W, Zheng Y, Wang N, Lee CS, Lee ST: A general synthetic route to III V compound semiconductor nanowires, Adv Mater13 :591 594, 2001 https://doi.org/10.1002/1521-4095(200104)13:8<591::AID-ADMA591>3.0.CO;2-#
  13. Wagner RS, Ellis WC: Vapor liquid solid mechanism of single crystal growth, Appl Phys Lett 4: 89 90, 1964 https://doi.org/10.1063/1.1753975
  14. Wang N, Tang YH, Zhang YF, Yu DP, Lee CS, Bello I, Lee ST: Transmission electron microscopy evidence of the de-feet structure in Si nanowires synthesized by laser ablation, Chern Phys Lett 283: 368 372, 1998 https://doi.org/10.1016/S0009-2614(97)01378-X
  15. Wu Y, Yang P: Melting and welding semiconductor nano- wires in nanotubes, Adv Mater 13 : 520 523, 2001 https://doi.org/10.1002/1521-4095(200104)13:7<520::AID-ADMA520>3.0.CO;2-W
  16. Yang P, Lieber CM: Nanorod superconductor composites: A pathway to materials with high critical current densities, Science 273: 1836 1840, 1996 https://doi.org/10.1126/science.273.5283.1836
  17. Yang P, Lieber CM: Nanostructured high temperature super-conductors: Creation of strong pinning columnar defects in nanorod/superconductor omposites, J Mater Res 12 : 2981 2996, 1997 https://doi.org/10.1557/JMR.1997.0393
  18. Yu DP, Hang QL, DingY, Zhang HZ, Bai ZG, Wang JJ, Zou YH, Qian W, Xiong GC, Feng SQ: Appl Phys Lett 73 : 3076 3078, 1998 https://doi.org/10.1063/1.122677
  19. Zhang HZ, Kong YC, WangYZ, Du X, Bal ZG, Wang JJ, Yu DP, Ding Y, Hang QL, Feng SQ: Ga2O3, nanowires prepared by physical evaporation, Solid State Comm 109 : 677 682, 1999 https://doi.org/10.1016/S0038-1098(99)00015-0
  20. Zheng MJ, Zhang LD, Zhang XY, Zhang J, Li GH: Fabrication and optical absorption of ordered indium oxide nanowire arrays embedded in anodic alumina membranes, Chern Phys Lett 334 : 298 302, 2001 https://doi.org/10.1016/S0009-2614(00)01426-3
  21. Zhu YQ, Hu WB, Hsu WK, Terrones M, Grobert N, Hare JP, Kroto HW, Walton DRM, Terrones H: SiC SiOx heterojunctions in nanowires, J Mater Chern 9 : 3173 3178, 1999 https://doi.org/10.1039/a905547i