The Study of Free Radical Scavenging Effect of Lycii Fructus by Liver Injury of Rats

백서 간손상에 의한 구기자의 유리자유기 소거능에 관한 연구

  • Yoon Sang Ju (Department of Pathology, College of Oriental Medicine, Dongguk University) ;
  • Jung Sun Yeong (Department of Pathology, College of Oriental Medicine, Dongguk University) ;
  • Kim Young Mi (Department of Pathology, College of Oriental Medicine, Dongguk University) ;
  • Ha Ki Tae (Department of Pathology, College of Oriental Medicine, Dongguk University) ;
  • Kim Cheorl Ho (Biochemistry and Molecular Biology, College of Oriental Medicine, Dongguk University) ;
  • Kim Dong Wook (Department of Medicinal Plant Resources, Mokpo National University) ;
  • Kim June Ki (Department of Pathology, College of Oriental Medicine, Dongguk University) ;
  • Choi Dall Yeong (Department of Pathology, College of Oriental Medicine, Dongguk University)
  • 윤상주 (동국대학교 한의과대학 병리학교실) ;
  • 정선영 (동국대학교 한의과대학 병리학교실) ;
  • 김영미 (동국대학교 한의과대학 병리학교실) ;
  • 하기태 (동국대학교 한의과대학 병리학교실) ;
  • 김철호 (동국대학교 한의과대학 생화학교실) ;
  • 김동욱 (목포대학교 생물산업학부 생약자원학과) ;
  • 김준기 (동국대학교 한의과대학 병리학교실) ;
  • 최달영 (동국대학교 한의과대학 병리학교실)
  • Published : 2003.02.01

Abstract

In the present study, we investigated the protective effect of the Lycii Fructus water extracts (LFE) against CCl4-induced hepatotoxicity and the mechanism underlying these protective effects in the rats. The pretreatment of LFE has shown to possess a significant protective effect by lowering the serum alanine and aspartate aminoteansferase (AST and ALT) and alkaline phosphatase (ALP). This hepatoprotective action was confirmed by histological observation, In addition, the pretreatment of LFE prevented the elevation of hepatic malondialdehyde (MDA) formation and the depletion of reduced glutathione (GSH) content and catalase activity in the liver of CC1₄-injected rats. The LFE also displayed hydroxide radical scavenging activity in a dose-dependent manner (IC50 = 83.6 μg/ml), as assayed by electron spin resonance (ESR) spin-trapping technique. Moreover, the expression of cytochrome P450 2E1 (CYP2E1) mRNA, as measured by reverse transcriptase-polymerase chain reaction (RT-PCR), was significantly decreased in the liver of LFE-pretreated rats when compared with that in the liver of control group. Based on these results, it was suggested that the hepatoprotective effects of the LFE may be related to antioxidant effects and regulation of CYP2E1 gene expression.

Keywords

References

  1. Biochem. J. v.246 no.2 Free-radical metabolism of carbon tetrachloride in rat liver mitochondria. A study of the mechanism of activation. Tomasi A;Albano E;Banni S;Botti B;Corongiu F;Dessi MA;Iannone A;Vannini V;Dianzani MU. https://doi.org/10.1042/bj2460313
  2. Cell. Biochem. Funct. v.6 no.2 Lipid peroxidation in purified plasma membrane fractions of rat liver in relation to the hepatoxicity of carbon tetrachloride. Le Page RN;Cheeseman KH;Osman N;Slater TF. https://doi.org/10.1002/cbf.290060203
  3. J. Biol. Chem. v.265 no.15 The in vitro NADPH-dependent inhibition by CCI$_4$of the ATP-dependent calcium uptake of hepatic microsomes from male rats. Studies on the mechanism of the inactivation of the hepatic microsomal calcium pump by the CCl$_3$. radical. Srivastava SP;Chen NQ;Holtzman JL.
  4. Liver. v.21 Effects of salviainolic acid A (SA-A) on liver injury: SA-A action on hepatic peroxidation. Liu P;Hu Y;Liu C;Liu C;Zhu D. https://doi.org/10.1034/j.1600-0676.2001.210604.x
  5. Phytomedicine v.9 Free radical scavenging action of the medicinal herb Limonium wrightii from the Okinawa islands. Aniya Y;Miyagi C;Nakandakari A;Kamiya S;Imaizumi N;Ichiba T. https://doi.org/10.1078/0944-7113-00112
  6. Food Chem Toxicol. v.40 Protective effect of Platycodi radix on carbon tetrachloride-induced hepatotoxicity. Lee KJ;Jeong HG. https://doi.org/10.1016/S0278-6915(01)00104-1
  7. 圖說漢方醫藥大辭典 v.3 陳存仁
  8. Korean J. Nutrition v.31 no.3 Changes of Serum Lipid Profiles after Eating Lycii Fructus in Rats Fed High Fat Diet. Kim H. S.;Park, Y. S.;Kim, C. I.
  9. Kor. J. Pharmacogn. v.25 no.3 Pharmacological effects of Lyciujm chinensis. Kim, N. J.;Youn, H. G.;Hong, N. D.
  10. J. Korean. Soc. Food Sci. Nutr. v.30 no.6 Effect of Korean Gu-Gi-Ja Tea on Plasma Hormone in Cd-administered Rats. Han, S. H.;Shin, M. K.;Lee H. S.
  11. BioI. Pharm. Bull. v.22 no.8 A novel cerebroside from lycii fructus preserves the hepatic glutathione redox system in primary cultures of rat hepatocytes. Kim, S. Y.;Lee, E. J.;Kim, H. P.;Kim, Y. C.;Moon, A.; Kim, Y. C. https://doi.org/10.1248/bpb.22.873
  12. Am. J. Clin. Pathol. v.28 A colorimetric method for determination of serum glutamic oxaloacetic and glutamic pyruvic transaminases Reitman, S.;Frankel, S.
  13. Agressologie. v.14 no.5 Changes of enzyme activity in some organs following thymectomy. Petkova J;Popova N;Kemileva Z.
  14. Anal. Biochem. v.95 no.2 Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Ohkawa H;Ohishi N;Yagi K. https://doi.org/10.1016/0003-2697(79)90738-3
  15. Arch. Biochem. Biophys. v.82 Tissue sulfhydryl groups. Ellman, G. L. https://doi.org/10.1016/0003-9861(59)90090-6
  16. Methods Enzymol. v.105 Catalase in vitro. Aebi H. https://doi.org/10.1016/S0076-6879(84)05016-3
  17. YAKUGAKU ZASSHI v.106 no.8 Experimental Production of Various Types of Cholestasis and the Effects of Cystemine. Kamokawa, A.;Ohta, S.;Tatsugi, A.;Kumasaka, M.;Shinoda, M. https://doi.org/10.1248/yakushi1947.106.8_709
  18. Biochem. Pharmacol. v.31 no.5 Selective early loss of polypeptides in liver microsomes of CCl$_4$-treated rats. Relationship to cytochrome P-450 content. Noguchi, T.;Fong, K L.;Lai, E. K.;Olson, L.;McCay, P. B. https://doi.org/10.1016/0006-2952(82)90439-7
  19. J. Biol. Chem. v.251 no.16 Lipid peroxidation and alteration of membrane lipids in isolated hepatocytes exposed to carbon tetrachloride. Weddle, C. C.;Hornbrook, K. R.;McCay, P. B.
  20. Hepatology v.11 no.3 The hepatocyte protein synthesis defect induced by galactosamine involves hypomethylation of ribosomal RNA. Clawson GA;Sesno J;Milam K;Wang YF;Gabriel C. https://doi.org/10.1002/hep.1840110314
  21. Enzyme. v.23 no.5 Dysregulation of protein synthesis in injured liver. A comparative study on microsomal and cytosole enzyme activities, microsomal lipoperoxidation and polysomal pattern in D-galactosamine and carbon tetrachloride-injured livers. Watanabe A;Akamatsu K;Takesue A;Taketa K. https://doi.org/10.1159/000458596
  22. Life Sci. v.36 no.6 Carbon tetrachloride-induced inhibition of hepatocyte lipoprotein secretion: functional impairment of Golgi apparatus in the early phases of such injury. Poli G;Chiarpotto E;Albano E;Cottalasso D;Nanni G;Marinari UM;Bassi AM;Dianzani MU. https://doi.org/10.1016/0024-3205(85)90634-4
  23. Cell Biochem Funct. v.9 no.2 In vivo and in vitro evidence concerning the role of lipid peroxidation in the mechanism of hepatocyte death due to carbon tetrachloride. Biasi F;Albano E;Chiarpotto E;Corongiu FP;Pronzato MA;Marinari UM;Parola M;Dianzani MU;Poli G. https://doi.org/10.1002/cbf.290090208
  24. Sulfur Amino Acids, : Biochemical and Clinical Aspects Liver glutatione as a reservior of L-cystine. Higashi, T.;Tateishi, N.;sakamoto, Y.;Alan R. Liss
  25. Res Commun Cherm Pathol Pharmacol. v.19 no.2 Carbon tetrachloride activation, lipid peroxidation and liver necrosis in different strains of mice. de Toranzo EG;Gomez MI;Castro JA.
  26. Food Chem Toxicol v.37 no.9-10 Intracellular antioxidants: from chemical to biochemical mechanism. Chaudiere J;Ferrari-Iliou R. https://doi.org/10.1016/S0278-6915(99)00090-3
  27. Free Radical Biology & Medicine v.11 Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. ESTERBAUER H.;SCHAUR RJ.;ZOLLNER H. https://doi.org/10.1016/0891-5849(91)90192-6
  28. Glutathione: Chemical, Biochemical and Medical Aspects, DOLPHIN D.;POULSON R.;AVRAMOVIC O.(Eds.)
  29. Glutathione: chemical, biochemical and medical aspects v.A Enzymatic and chemical methods for the determination of glutathione ANDERSON M.E.;DOLPHIN D.; POULSON R.;AVRAMOVIC O.(Eds.)
  30. Physiol. Rev. v.50 Catalase : Physicial and Chemical Properties, Mechanism of Catalysis, and Physiological Role Deisseroth, A.;Dounce, A.L. https://doi.org/10.1152/physrev.1970.50.3.319
  31. Prog. Biophys. Mol. Biol. v.72 Understanding the Structure and Function of Catalases: Clues from Molecular Evolution and In Vitro Mutagenesis Zamocky, M.;Koller, F. https://doi.org/10.1016/S0079-6107(98)00058-3
  32. Methods Enzymol. v.233 In vivo detection of radical adducts by electron spin resonance. Mason RP;Knecht KT. https://doi.org/10.1016/S0076-6879(94)33013-1
  33. J Ethnopharmacol. v.60 no.1 Evaluation of the hepatoprotective and antioxidant activity of Boehmeria nivea var. nivea and B. nivea var. tenacissima. Lin CC;Yen MH;Lo TS;Lin JM. https://doi.org/10.1016/S0378-8741(97)00122-0
  34. Methods Enzymol. v.105 Spin trapping of superoxide and hydroxyl radicals. Rosen GM;Rauckman EJ. https://doi.org/10.1016/S0076-6879(84)05026-6
  35. Free Radic Biol Med. v.32 no.5 Metal independent production of hydroxyl radicals by halogenated quinonrs and hydrogen peroxide : an ESR spin trapping study. Zhu BZ;Zhao HT;Kalyanaraman B;Frei B. https://doi.org/10.1016/S0891-5849(01)00824-3
  36. Res. Common. Chem. Pathol. Pharmacol. v.28 Vitamin E and inhibition of platelet lipoxygenase. Gwebu, E. T.;Ttewyn, R. W.;Cornwell, D. G.; Panganamala, R V.
  37. Toxicol Appl Pharmacol. v.153 no.1 Resistance to carbon tetrachloride- induced hepatotoxicity in mice which lack CYP2E1 expression. Wong FW;Chan WY;Lee SS. https://doi.org/10.1006/taap.1998.8547