DOI QR코드

DOI QR Code

Antioxidant Effect of Enzymatic Hydrolyzate from a Kelp, Ecklonia cava


Abstract

The potential antioxidative activity of water-soluble enzymatic hydrolyzates from a kelp, Ecklonia cava was evaluated by free radical scavenging and lipid peroxidation assays. To prepare water-soluble hydrolyzates from E. cava the seaweed was enzymatically hydrolyzed by five carbohydrases (Viscozyme, Celluclast, AMG, Termamyl and Ultraflo) and five proteases (Protamex, Kojizyme, Neutrase, Flavourzyme and Alcalase). Among all the hydrolyzates, Celluclast hydrolyzate effectively scavenged free radicals released from DPPH (1,1-diphenyl-2- pricrylhydrazyl) and recorded around 73% scavenging activity at the concentration of 4 mg ${\cdot}ml^{-1}$. This hydrolyzate was thermally stable and DPPH radical scavenging activity remained 80% or higher at heating temperatures of 40 and 60$^{\circ}C$ up to 12 h and around 80% at 100$^{\circ}C$ up to 8 h. AMG and Ultraflo hydrolyzate inhibited the lipid peroxidation of fish oil as that of $\alpha$-tocopherol. These results suggested that an enzymatic extraction will be an effective way for the production of a potential antioxidant from seaweeds.

Keywords

References

  1. Abdalla A.E. and Roozen J.P. 1999. Effect of plant extracts on the oxidative stability of sunflower oil and emulsion. Food Chem. 64: 323-329. https://doi.org/10.1016/S0308-8146(98)00112-5
  2. AOAC. 1995. Official Method of Analysis of the Association of Official Analytical Cemists (15th ed.), Washington D.C.
  3. Athukorala Y., Lee K.W., Song C.B., Ahn C.B., Shin T.S., Cha Y.J., Shahidi F. and Jeon Y.J. 2003. Potential antioxidant activity of marine red alga Grateloupia filicina extracts. J. Food Lipids 10: 251-263. https://doi.org/10.1111/j.1745-4522.2003.tb00019.x
  4. Bernard F., Pierre W.T., Francois H., Laurence B., Alain D. and Jean-Michel M. 1997. Comparative study of radical scavenger and antioxidant properties of phenolic compounds from Vitis vinifera cell cultures using in vitro tests. Life Sci. 61: 2103-2110. https://doi.org/10.1016/S0024-3205(97)00883-7
  5. Bhagavathi A.N., Narayanan K.N., Gary D.S. and Bryan P.B. 2002. Interactive gene expression pattern in prostate cancer cells exposed to phenolic antioxidants. Life Sci. 70: 1821-1839. https://doi.org/10.1016/S0024-3205(02)01481-9
  6. Blois M.S. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1120. https://doi.org/10.1038/1811199a0
  7. Cahyana A.H., Shuto, Y. and Kinoshita, Y. 1992. Pyropheophytin as an antioxidative substance from the marine alga, Arame (Eisenia bicyclis). Biosci. Biotechnol. Biochem. 56: 1533-1535. https://doi.org/10.1271/bbb.56.1533
  8. Cheng Z., Li Y. and Chang W. 2003. Kinetic deoxyribose degradation assay and its application in assessing the antioxidant activities of phenolic compounds in a Fenton-type reaction system. Anal. Chim. Acta 478: 129-137. https://doi.org/10.1016/S0003-2670(02)01435-6
  9. Choi U., Shin D.H., Chang Y.S. and Shin J.I. 1992. Screening of natural antioxidant from plant and their antioxidative effect. Kor. J. Food Sci. Technol. 24: 142-148.
  10. Duh P.D. and Yen G.C. 1997. Antioxidant efficacy of methanolic extracts of peanut hulls in soybean and peanut oils. J. Am. Oil Chem. Soc. 74: 745-748. https://doi.org/10.1007/s11746-997-0212-z
  11. Dykens J.A., Shick J.M., Benoit C., Buettner G.R., and Winston G.W. 1992. Oxygen radical production in the sea anemone Anthopleura elegantissima and its endosymbiotic algae. J. Exp. Biol. 168: 219-241.
  12. Frankle E. 1996. Antioxidants in lipid foods and their impact on food quality. Food Chem. 57: 51-55. https://doi.org/10.1016/0308-8146(96)00067-2
  13. Frlich I. and Riederer P. 1995. Free radical mechanisms in dementia of Alzheimer type and the potential for antioxidative treatment. Drug Res. 45: 443-449.
  14. Fujimoto K. and Kaneda T. 1984. Separation of antioxygenic (antioxidant) compounds from marine algae. Hydrobiologia 116/117: 111-113. https://doi.org/10.1007/BF00027648
  15. Heo S.J., Lee K.W., Song C.B. and Jeon Y.J. 2003. Antioxidant activity of enzymatic extracts from brown seaweeds. Algae 18: 71-81. https://doi.org/10.4490/ALGAE.2003.18.1.071
  16. Kang R.S., Won K.S., Hong K.P. and Kim J.M. 2001. Population studies on the Kelp Ecklonia cava and Eisenia bicyclis in Dokdo, Korea. Algae 16: 209-215.
  17. Kim K.Y., Guo Q. and Packer L. 2002. Free radical scavenging activity of red ginseng aqueous extracts. J. Toxicology 172: 149-156 https://doi.org/10.1016/S0300-483X(01)00585-6
  18. Konig G.M., Wright A.D., Sticher O., Anghofer C.K., Pezutto J.M. 1994. Biological activities of selected marine natural products. Planta Medica 60: 532-537. https://doi.org/10.1055/s-2006-959565
  19. Lee B.H., Choi B.W., Chun J.H. and Yu B.S. 1996. Extraction of water soluble antioxidants from seaweeds. J. Kor. Ind. & Eng. Chem. 7: 1069-1077.
  20. Liu F., Ooi V.E.C. and Chang S.T. 1997. Free radical scavenging activities of mushroom polysaccharide extracts. Life Sci. 60: 763-771. https://doi.org/10.1016/S0024-3205(97)00004-0
  21. Lu Y. and Foo Y.L. 2000. Antioxidant and free radical scavenging activities of selected medicinal herbs. Life Sci. 66: 725-735. https://doi.org/10.1016/S0024-3205(99)00643-8
  22. Lu Y. and Foo Y.L. 2000. Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chem. 68: 81-85. https://doi.org/10.1016/S0308-8146(99)00167-3
  23. Matsukawa R., Dubinsky Z., Kishimoto E., Masak K., Masuda Y., Takeuchi T., Chihara M., Yamamoto Y., Niki E. and Karube, I. 1997. A comparison of screening methods for antioxidant activity in seaweeds. J. Appl. Phycol. 9: 29-35. https://doi.org/10.1023/A:1007935218120
  24. Moore R.E. 1978. Algal nonisoprenoids. In: Scheuer P.J. (ed.) Marine Natural Products, Chemical and Biological Perspective. Academic Press, New York. pp. 44-171.
  25. Oki T., Masuda M., Furuta S., Nishibia Y., Terahara N. and Suda I. 2002. Involvement of anthocyanins and other phenolic compounds in radical-scavenging activity of purplefleshed sweet potato cultivars. J. Food Chem. Toxicol. 67: 1752-1757.
  26. Owen R.W., Haubner R., Mier W., Giacosa A., Hull W.E., Spiegelhalder B. and Bartsch H. 2003. Isolation, structure elucidation and antioxidant potential of the major phenolic and flavonoid compounds in brined olive drupes. Food Chem. Toxicol. 41: 703-717. https://doi.org/10.1016/S0278-6915(03)00011-5
  27. Ruperez P., Ahrazem O. and Leal J.A. 2002. Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J. Agric. Food Chem. 50: 840-845. https://doi.org/10.1021/jf010908o
  28. Satoru K., Noboru T., Hiroo N., Shinji S. and Hiroshi S. 2003. Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities. Biochem. Phamacol. 65: 173-179. https://doi.org/10.1016/S0006-2952(02)01478-8
  29. Sies H. 1986. Biochemistry of oxidative stress. Angew. Chem. Int. Edit. in English. 25: 1058-1071. https://doi.org/10.1002/anie.198610581
  30. Steinberg D., Parthasarathy S., Carew T.E., Khoo J.C. and Witztum J.L. 1989. Beyond cholesterol. Modification of low density lipoprotein that increase its atherogenicity. New England J. Med. 320: 915-924. https://doi.org/10.1056/NEJM198904063201407
  31. Sukenik A., Zmora O. and Carmeli Y. 1993. Biochemical quality of marine unicellular algae with special emphasis lipid composition: II. Nannochloropsis sp. Aquaculture 117: 313-326. https://doi.org/10.1016/0044-8486(93)90328-V
  32. Takashi N., Akihiro F., Terukazu N., Michio F. and Eisuke K. 1999. Inhibition of the generation of thrombin and factor Xa by a fucoidan from the brown seaweed Ecklonia kurome. Thrombosis Res. 96: 37-49. https://doi.org/10.1016/S0049-3848(99)00060-2
  33. Takashi N., Tomoko Y., Mariko H., Terukazu N. and Haruo S. 2000. Effects of a fucoidan on the activation of plasminogen by u-PA and t-PA. Thrombosis Res. 99: 623-634. https://doi.org/10.1016/S0049-3848(00)00289-9
  34. Tian L.L., White P.J. 1994. Antioxidant activity of oat extract in soybean and cottonseed oils. J. Am. Oil Chem. Soc. 71: 1079-1086. https://doi.org/10.1007/BF02675900
  35. Wagner J.R., Hu C.C. and Ames B.N. 1992. Endogenous oxidative damage of deoxycytidine in DNA. Proc. Nat'l Acad. Sci. USA 89: 3380-3384. https://doi.org/10.1073/pnas.89.8.3380
  36. Yan X., Nagata T. and Fan X. 1998. Antioxidant activities in some common seaweeds. Plant Foods Hum. Nutrit. 52: 253-262. https://doi.org/10.1023/A:1008007014659

Cited by

  1. Algal-oligosaccharide-lysates prepared by two bacterial agarases stepwise hydrolyzed and their anti-oxidative properties vol.71, pp.5, 2005, https://doi.org/10.1111/j.1444-2906.2005.01075.x
  2. Antioxidant Activity of Enzymatic Extracts fromStellaria dichotoma vol.11, pp.4, 2008, https://doi.org/10.1089/jmf.2007.0135
  3. Effect of enzyme-assisted extract of Sargassum coreanum on induction of apoptosis in HL-60 tumor cells vol.24, pp.4, 2012, https://doi.org/10.1007/s10811-011-9685-0
  4. Bio-functionalities of proteins derived from marine algae — A review vol.48, pp.2, 2012, https://doi.org/10.1016/j.foodres.2012.03.013
  5. Antioxidant Potential of Ecklonia cavaon Reactive Oxygen Species Scavenging, Metal Chelating, Reducing Power and Lipid Peroxidation Inhibition vol.12, pp.1, 2006, https://doi.org/10.1177/1082013206062422
  6. Chemical Characterization of Enteromorpha prolifera Extract Obtained by Enzyme-Assisted Extraction and Its Influence on the Metabolic Activity of Caco-2 vol.18, pp.3, 2017, https://doi.org/10.3390/ijms18030479
  7. Impact of Enzyme- and Ultrasound-Assisted Extraction Methods on Biological Properties of Red, Brown, and Green Seaweeds from the Central West Coast of Portugal vol.63, pp.12, 2015, https://doi.org/10.1021/jf504220e
  8. Processing and Biological Activity of Gelatin Hydrolysate from Branchiostegus japonicus Scales vol.42, pp.5, 2009, https://doi.org/10.5657/kfas.2009.42.5.417
  9. Antioxidant activities of phlorotannins purified from Ecklonia cava on free radical scavenging using ESR and H2O2-mediated DNA damage vol.226, pp.1-2, 2007, https://doi.org/10.1007/s00217-006-0510-y
  10. Depressive Effects on the Central Nervous System and Underlying Mechanism of the Enzymatic Extract and Its Phlorotannin-Rich Fraction fromEcklonia cavaEdible Brown Seaweed vol.76, pp.1, 2012, https://doi.org/10.1271/bbb.110702
  11. Radio-protective effect of polysaccharides isolated from Lactobacillus brevis-fermented Ecklonia cava vol.52, 2013, https://doi.org/10.1016/j.ijbiomac.2012.10.004
  12. Protective effect of Ecklonia cava enzymatic extracts on hydrogen peroxide-induced cell damage vol.41, pp.12, 2006, https://doi.org/10.1016/j.procbio.2006.06.028
  13. Novel anticoagulant compound from fermented red alga Pachymeniopsis elliptica vol.227, pp.3, 2008, https://doi.org/10.1007/s00217-007-0802-x
  14. BIOACTIVE PROTEINS, PEPTIDES, AND AMINO ACIDS FROM MACROALGAE1 vol.47, pp.2, 2011, https://doi.org/10.1111/j.1529-8817.2011.00969.x
  15. Interactive Effects of Increased Temperature and pCO2 Concentration on the Growth of a Brown Algae Ecklonia cava in the Sporophyte and Gametophyte Stages vol.37, pp.3, 2015, https://doi.org/10.4217/OPR.2015.37.3.201
  16. Enzymatic Hydrolysis of Plants and Algae for Extraction of Bioactive Compounds vol.29, pp.4, 2013, https://doi.org/10.1080/87559129.2013.818012
  17. Antioxidant activity of polysaccharide purified from Acanthopanax koreanum Nakai stems in vitro and in vivo zebrafish model vol.127, 2015, https://doi.org/10.1016/j.carbpol.2015.02.043
  18. Antioxidant activity of enzymatic extracts from a brown seaweed Ecklonia cava by electron spin resonance spectrometry and comet assay vol.221, pp.1-2, 2005, https://doi.org/10.1007/s00217-005-1187-3
  19. Chemical and structural characterization of Pholiota nameko extracts with biological properties vol.216, 2017, https://doi.org/10.1016/j.foodchem.2016.08.030
  20. ESR SPECTROSCOPY INVESTIGATION OF ANTIOXIDANT ACTIVITY AND PROTECTIVE EFFECT ON HYDROXYL RADICAL-INDUCED DNA DAMAGE OF ENZYMATIC EXTRACTS FROMPICRORRHIZA KURROA vol.32, pp.6, 2008, https://doi.org/10.1111/j.1745-4514.2008.00192.x
  21. Immunomodulatory Effects of an Enzymatic Extract from Ecklonia cava on Murine Splenocytes vol.10, pp.3, 2008, https://doi.org/10.1007/s10126-007-9062-9
  22. Antioxidant Properties of Seven Cultivated and Natural Edible Seaweed Extracts from Taiwan vol.21, pp.3, 2012, https://doi.org/10.1080/10498850.2011.594211
  23. Enzymatic Extract from Ecklonia cava Induces the Activation of Lymphocytes by IL-2 Production Through the Classical NF-κB Pathway vol.13, pp.1, 2011, https://doi.org/10.1007/s10126-010-9270-6
  24. Enzymatic Improvement in the Polyphenol Extractability and Antioxidant Activity of Green Tea Extracts vol.77, pp.1, 2013, https://doi.org/10.1271/bbb.120373
  25. Protective Effects Against H2O2-Induced Damage by Enzymatic Hydrolysates of an Edible Brown Seaweed, Sea Tangle (Laminaria japonica) vol.12, pp.1, 2009, https://doi.org/10.1089/jmf.2007.0675
  26. Effect of Dieckol, a Component of Ecklonia cava, on the Promotion of Hair Growth vol.13, pp.12, 2012, https://doi.org/10.3390/ijms13056407
  27. Antibacterial Activity ofEcklonia cavaAgainst Methicillin-ResistantStaphylococcus aureusandSalmonellaspp. vol.7, pp.4, 2010, https://doi.org/10.1089/fpd.2009.0434
  28. Protective Effect of Enzymatic Extracts from Sargassum coreanum on H2O2-induced Cell Damage vol.13, pp.1, 2010, https://doi.org/10.5657/fas.2010.13.1.026
  29. Anti-inflammatory activity of a sulfated polysaccharide isolated from an enzymatic digest of brown seaweedSargassum horneriin RAW 264.7 cells vol.11, pp.1, 2017, https://doi.org/10.4162/nrp.2017.11.1.3
  30. The JNK/NFκB pathway is required to activate murine lymphocytes induced by a sulfated polysaccharide from Ecklonia cava vol.1830, pp.3, 2013, https://doi.org/10.1016/j.bbagen.2012.12.008
  31. Nursery and Main Culture Conditions for Mass Cultivation of the Brown Alga, Ecklonia cava Kjellman vol.43, pp.6, 2010, https://doi.org/10.5657/kfas.2010.43.6.687
  32. Radical scavenging capacity and cytoprotective effect of enzymatic digests of Ishige okamurae vol.20, pp.6, 2008, https://doi.org/10.1007/s10811-008-9320-x
  33. Improved antioxidant activities of brown seaweed Ecklonia radiata extracts prepared by microwave-assisted enzymatic extraction vol.27, pp.5, 2015, https://doi.org/10.1007/s10811-014-0476-2
  34. Aqueous Extracts of the Edible Gracilaria tenuistipitata are Protective Against H2O2-Induced DNA Damage, Growth Inhibition, and Cell Cycle Arrest vol.17, pp.6, 2012, https://doi.org/10.3390/molecules17067241
  35. Enzymatic extraction of fucoxanthin from brown seaweeds vol.53, pp.9, 2018, https://doi.org/10.1111/ijfs.13808