DOI QR코드

DOI QR Code

Seasonal Changes of Phytoplankton Communities in the Paksil and Jungyang Marshes

박실지와 정양지의 식물플랑크톤 군집의 계절 변동


Abstract

The physico-chemical characteristics and seasonal variations of phytoplankton community were investigated in the Paksil and Jungyang marshes. Water and phytoplankton samples for analyses were collected monthly from April 2002 to March 2003. A total of 421 taxa of phytoplankton belonging to eight classes identified. The number of taxa was highest in Bacillariophyceae, followed by Chlorophyceae, Euglenophyceae, Cyanophyceae, Chrysophyceae, Dinophyceae, Xanthophyceae and Cryptophyceae. The standing crops ranged from 1.25 ${\times}$ $10^6$ to 5.85 ${\times}$ $10^6$ cells ${\cdot}l^{-1}$ in Paksil marsh and 0.25 to 9.63 ${\times}$ $10^6$ cells ${\cdot}l^{-1}$ in Jungyang marsh. The highest algal density at Paksil marsh was recorded in October during the high development of Chlorococcales while the lowest value occured in July. In the Jungyang marsh, the maximum algal density was recorded in October when Cryptomonas sp. and Mallomonas sp. accounted for 64% to total cell numbers and the lowest cell density was observed in January due to the decrease of Chlorophyceae. The dominant species were represented by Euglena proxima, Trachelomonas oblonga, Trachelomonas volvocina of Euglenophyceae, Dictyosphaerium pulchellum, Monoraphidium griffithii, Oocystis parva of Chlorophyceae, Dinobryon sertularia, Kephyrion rubri-claustri of Chrysophyceae, Achnanthes minutissima of Bacillariophyceae and Cryptomonas sp. of Cryptophyceae in the Paksil and Jungyang marshes. Phytoplankton diversity(H’) and dominance index varied rather irregularly throughout the sampling period but they were significantly correlated. The highest diversity(H’Paksil = 3.68, H’Jungyang = 3.63) coincided with the lowest values of dominance(DPaksil = 0.05, DJungyang = 0.05)

Keywords

References

  1. 김용재, 정준. 1993. 임하호의 식물플랑크톤 군집 분석. 한국육수학회지 26: 175-196
  2. 김용재, 최재신, 김한순. 1997. 임하호의 식물플랑크톤 군집 구조. 한국육수학회지 30: 307-324
  3. 김지환, 김영환, 이인규. 1998. 충주호 식물플랑크톤 군집의 동태. 한국조류학회지 13: 339-354
  4. 김철수. 2000. 박실늪의 퇴적과 교란에 따른 수생 및 습생 관속식물의 군집 동태와 생산성. 경상대학교 박사학위논문. 164 pp
  5. 김한순, 정준. 1993. 창녕군 자연늪의 담수조류상. 한국육수학회지 26: 305-319
  6. 김한순, 최재신, 김용재. 1998. 가창댐의 식물플랑크톤 군집의 동태. 한국육수학회지 31: 337-344
  7. 김한순. 2001. 우포늪과 목포늪의 식물플랑크톤 군집의 계절적 변동. 한국육수학회지 34: 90-97
  8. 박정원, 권덕기. 1998. 합천호에서 남조류 수화현상의 초기발생에 대한 연구. 수계에서 Microcystis aeruginosa Kuetz. 의 밀도 증가와 K+. Na+. Mi+ 및 Ca2+ 농도와의 관계. 한국육수학회지 31: 97-102
  9. 이진환. 최정은. 2001. 경기도 연천군 자연늪지에 있어서 식물플랑크톤의 구조와 동태. 한국조류학회지 16: 157-163
  10. 오경환. 1988. 정양호 생태계에 있어서 수생관속식물의 군집구조와 생산성 및 영양염류의 순환. 서울대학교 박사학위논문. 141 pp
  11. 정영호. 1974. 한강의 Microflora에 관한 연구 (제8보)-남한의 유일한 고층습원인 대함산 용늪의 기중조류에 대하여. 한국식물학회지 17: 63-68
  12. 정영호. 1983. 함안 법수면 소재 자연늪의 식물성플랑크톤. 자연보호 44: 41-48
  13. 정영호, 김기태. 1987. 북한강의 수원인 대암산 용늪(고충습원)의 식물성 플랑크톤. 한국환경생물학회지 5: 1-16
  14. 정영호, 노경희. 1987. 함안 자연늪산 규조류의 분류. Proc. Coll. Natur. Sci. SNU. 12: 75-100
  15. 정영호, 이옥민. 1986. 함안 자연늪산 물먼지말류의 분류학적 연구. Proc. Coll. Natur. Sci. SNU. 12: 75-100
  16. 정준, 김한순, 김용재. 1994. 낙동강 하구댐의 식물플랑크톤의 군집구조. 한국육수학회지 27: 33-46
  17. 한상훈. 1995. 습지생태계와 그 중요성. 자연보존 91: 42-50
  18. 합천군. 1997. 합천군통계연보. PP. 43-139
  19. APHA, AWWA, WPCF, 1985. Standard method for the examination of water and waster, Leth. APHA, NewYork. 1268pp
  20. Barbier E.B., Burgess J.C. and Folke C. 1994. Paradise lost? The ecological economics of biodiversity, Earthscan, London. 267pp
  21. Denman K.L. 1994. Scale-determining biological-physical interaction in oceanic food webs. In: Giller P.S., HiIdrew A G. and Raffaelli D.G. (eds), Aquaticecology-scale, patternand process. Blackwell, Oxford. pp. 377-402
  22. Dugan P.J. 1993. Wetlands in danger. Beazley M., London. 187pp
  23. Finlayson M. and Moser M. 1992. Wetlands, facts on file. Oxford University Press, Oxford. 224 pp
  24. Flores L.N. and Barone R. 1998. Phytoplankton dynamics in two reservoirs with different trophic state (Lake Rosamarina and Lake Arancio, Italy). Hydrobiologia 369/370:163-178
  25. Hendy N.I. 1974. The permanganate method for cleaning freshly gathered diatoms. Microscopy 32: 423-426
  26. Hutchinson G.E. 1967. A Treaties on Umnology. Vol. 2, John Willey & Sons, Inc., NY. 1115 pp
  27. Kohler J. and Hoeg S. 2000. Phytoplankton selection in a riverlake system during two decades of changing nutrient supply. Hydrobiologia 424: 13-24 https://doi.org/10.1023/A:1003988508599
  28. Marker A.F.H., Nusch E. A., Rai H. and Reimann B. 1980. The measurement of photosynthetic pigments in freshwaters and standardization of methods: conclusions and recommendation. Arch. Hydrobiol. 14: 91-106
  29. McQueen D.J. and Lean D.R.S. 1986. Influence of water temperature and nitrogen to phosphorus ration on the dominant blue-green algae in Lake St. Goerge, Ontario. Can. J. Fish. Aquat. Sci. 44: 598-604 https://doi.org/10.1139/f87-073
  30. OECO. 1982. Eutrophication of waters, monitoring, assessment and control. OECO, Paris. 154pp
  31. Padisak J., T6th L.G. and Rajczy M. 1990. Stir up effect of wind on a more-or-less stratified shallow lake phytoplankton community, Lake Balaton, Hungary. In: Bir6 P. & Tailing J. F. (eds), Trophic relations inland waters. Developments in Hydrobiology 53. Kluwer Academic Publishers, Dordrecht: 249-254.Reprinted from Hydrobiologia 191
  32. Pielou E.C. 1966. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13: 131-144 https://doi.org/10.1016/0022-5193(66)90013-0
  33. Reynolds C.S. 1988. The concept of ecological succession applied to seasonal periodicity of freshwater phytoplankton. Verh. Int. Ver. Limnol. 23: 683-691
  34. Reynolds C.S. 1994. The role of fluid motion in the dynamics of phytoplankton in lakes and rivers. In: Giller P.S., HiIdrew AG. and Raffaelli D.G. (eds), Aquatic ecology-scale, pattern and process. Blackwell, Oxford. pp. 141-187
  35. Reynolds C.S., Huszar V., Kruk c, Naselli-Flores L. and Melo S. 2002. Towards a functional classification of the freshwater phytoplankton. J, Plankton Res.24: 417-428 https://doi.org/10.1093/plankt/24.5.417
  36. Rhee G.Y. and Gotham I.J. 1980. Optimum N:P ratios and coexistence of planktonic algae. J. Phycol. 16: 486-489 https://doi.org/10.1111/j.1529-8817.1980.tb03065.x
  37. Sakamoto M. 1966. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Arch. Hydrobiol. 62: 1-28
  38. Shannon E. and Weaver W. 1963. The mathematical theory of communication. Illinoise Univ. Press, Urbana. 177pp
  39. Simpson E. H. 1949.System of water quality from the biological point of view. Arch. Hydrobiol. Beih. 2. Erhrg. limnol. 7: 218pp
  40. Smith V. H. 1986. Prediction the proportion of blue-green algae in lake phytoplankton. Can. J. Fish. AquaticSci. 43: 148-153 https://doi.org/10.1139/f86-016