DOI QR코드

DOI QR Code

Putative Histone H2A Genes from a Red Alga, Griffithsia japonica


Abstract

Histones are important proteins that interact with the DNA double helix to form nucleosome. Two putative histone genes, GjH2A-1 and GjH2A-2 were isolated from a red alga Griffithsia japonica. The putative open reading frame of GjH2A-1 and GjH2A-2 shared high similarity with the previously reported amino acid sequences of histone H2As. They have a motif consisting of seven amino acids A-G-L-Q-F-P-V, which matches the histone H2A motif [AC]-G-L-x-F-P-V. Phylogenetic trees were constructed from amino acid sequences of 38 histone H2As. The histone H2As were divided into two groups: major H2As and H2A.F/Z variants. The major histone H2A group consisted of animals, fungi, plants + green algae, and red algae H2A subgroups. The animal histone H2A subgroup was divided into vertebrates, echinoderms, nematodes, insects, and segmented worms H2As. The putative red algal histone genes, GjH2A-1 and GjH2A-2, constituted an independent lineage. This is the first report on red algal histone genes.

Keywords

References

  1. Chaboute M.E., Chaubet N., Gigot C and Philipps G. 1993. Histones and histone genes in higher plants: structure and genomic organization. Biochimie. 75: 523-531 https://doi.org/10.1016/0300-9084(93)90057-Y
  2. DeBry R.W. 1998. Comparative analysis of evolution in a rodent histone H2a. J. Mol. Evol. 46: 355-360 https://doi.org/10.1007/PL00006312
  3. Ehinger A., Denison S.H. and May G.S. 1990. Sequence, organization and expression of the core histone genes of Aspergillus nidulans. Mol. Gen. Genet. 222: 416-424 https://doi.org/10.1007/BF00633848
  4. Goffeau A., Barrell B.G., Bussey H., Davis R.W., Dujon B., Feldmann H., Galibert F., Hoheisel J.D., Jacq C, Johnston M., Louis E.J., Mewes HW., Murakami Y., Philippsen P., Tettelin H. and Oliver S.G. 1996. Life with 6000 genes. Science 274: 563-567
  5. Ingham L.D. and Davis F.C. 1988 Cloning and characterization of a core histone gene tandem repeat in Urechis caupo. Mol. Cell. Biol. 8: 4425-4432
  6. Jiang W., Guo X. and Bhavanandan V.P. 1998. Histone H2A.F/Z subfamily: the smallest member and the signature sequence. Biochem. Biophys. Res. Commun. 245: 613-617
  7. Kornberg R. and Thomas J.O. 1974. Chromatin structure; oligomers of the histones. Science 184: 865-868 https://doi.org/10.1126/science.184.4139.865
  8. Kumar S., Tamura K., Jakobsen LB. and Nei M. 2001. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17: 1244-1245 https://doi.org/10.1093/bioinformatics/17.12.1244
  9. Lee Y.K., Choi H.-G., Hong C.B. and Lee I.K. 1995. Sexual differentiation of Griffithsia japonica (Ceramiales, Rhodophyta): Nuclear ploidy level of mixed phase plants in G. japonica. J. Phycol. 31: 668-673 https://doi.org/10.1111/j.1529-8817.1995.tb02564.x
  10. Lee Y.K., Hong C.B., Soh Y. and Lee I.K. 2002. A eDNA clone for cyclophilin from Griffithsia japonica (Ceramiales, Rhodophyta) and phylogenetic analysis of cyclophilins. Mol. Cells 13: 12-20
  11. Lee Y.K., Kim S.H., Hong C.B., Chah O.-K., Kim G.H. and Lee I.K. 1998. Heat-shock protein 90 may be involved in differentiation of the female gametophytes in Griffithsia japonica (Ceramiales. Rhodophyta). J. Phycol. 34: 1017-1023 https://doi.org/10.1046/j.1529-8817.1998.341017.x
  12. Marzluff W.F., Gongidi P., Woods K.R., Jin J. and Maltais L.J. 2002 The human and mouse replication-dependent histone genes. Genomics 80: 487-498 https://doi.org/10.1016/S0888-7543(02)96850-3
  13. Mcghee J.D. and Felsenfeld G. 1980. Nucleosome structure. Annu. Rev. Biochem. 49: 1115-1156 https://doi.org/10.1146/annurev.bi.49.070180.005343
  14. Melfi R., Palla F., Di Simone P., Alessandro c. Cali L., Anello L. and Spinelli G. 2000. Functional characterization of the enhancer blocking element of the sea urchin early histone gene cluster reveals insulator properties and three essential cis-acting sequences. J. Mol. Biol. 304: 753-763 https://doi.org/10.1006/jmbi.2000.4273
  15. Noll M. and Kornberg RD. 1977. Action of micrococcal nuclease on chromatin and the location of histone H1. J. Mol. BioI. 109: 393-404 https://doi.org/10.1016/S0022-2836(77)80019-3
  16. Pehrson J.R and Fuji RN. 1998. Evolutionary conservation of histone macroH2A subtypes and domains. Nucleic Acids Res.26: 2837-2842 https://doi.org/10.1093/nar/26.12.2837
  17. Roberts S.B., Sanicola M., Emmons S.W. and Childs G. 1987. Molecular characterization of the histone gene family of Caenorhabditis elegans. J. Mol. BioI. 196: 27-38 https://doi.org/10.1016/0022-2836(87)90508-0
  18. Sullivan S., Sink D.W., Trout K.L., Makalowska I., Taylor P.M., Baxevanis A.D. and Landsman D. 2002. The Histone Database. Nucleic Acids Res. 30: 341-342 https://doi.org/10.1093/nar/30.1.341
  19. Tatusov R.L., Altschul S.F. and Koonin E.V. 1994. Detection of conserved segments in proteins: iterative scanning of sequence databases with alignment blocks. Proc. Natl. Acad. Sci. USA, 91: 12091-12095 https://doi.org/10.1073/pnas.91.25.12091
  20. Thatcher T.H. and Gorovsky M.A. 1994. Phylogenetic analysis of the core histones H2A, H2B, H3, and H4. Nucleic Acids Res. 22: 174-179 https://doi.org/10.1093/nar/22.2.174
  21. Thompson, J.D., Gibson T.J. Plewniak F. Jeanmougin F. and Higgins. D.G. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882
  22. Wang Z.F., Krasikov T., Frey M.R, Wang J., Matera A.G. and Marzluff W.F. 1996. Characterization of the mouse histone gene cluster on chromosome 13: 45 histone genes in three patches spread over 1Mb. Genome Res.6: 688-701 https://doi.org/10.1101/gr.6.8.688
  23. Wainright P.O., Hinkle G., Sogin M.L. and Stickel S.K. 1993. Monophyletic origins of the metazoa: an evolutionary link with fungi. Science 260: 340-342 https://doi.org/10.1126/science.8469985