참고문헌
- E. Bedford and J. Dadok, Bounded domains with prescribed group of automor-phisms, Comment. Math. Helv. 62 (1987), 561–572 https://doi.org/10.5169/seals-47361
- G. Bredon, Introduction to compact transformation groups, Academic Press, New York, 1972
- D. Ebin, The manifold of Riemannian metrics, Global analysis, Proceedings of Symposium in Pure Mathematics, XV, AMS (1970), 17–40.
- B. L. Fridman and E. A. Poletsky, Upper semicontinuity of automorphism groups, Math. Ann. 299 (1994), 615–628. https://doi.org/10.1007/BF01459802
-
B. L. Fridman, D. Ma and E. A. Poletsky, Upper semicontinuity of the dimensions of automorphism groups in
$C^n$ , to appear in Amer. J. Math 125 (2003) - B. L. Fridman, Biholomorphic invariants of a hyperbolic manifold and some applications, Trans. Amer. Math. Soc. 276 (1983), no. 2, 685–698. https://doi.org/10.1090/S0002-9947-1983-0688970-2
- B. L. Fridman, A universal exhausting domain, Proc. Amer. Math. Soc. 98 (1986), 267–270. https://doi.org/10.1090/S0002-9939-1986-0854031-0
- B. L. Fridman, K. T. Kim, S. G. Krantz and D. Ma, On fixed points and determin-ing sets for holomorphic automorphisms, Michigan Math. J. 50 (2002), 507–515. https://doi.org/10.1307/mmj/1039029980
- R. Greene and S. G. Krantz, The Automorphism groups of strongly pseudoconvex domains, Math. Ann. 261 (1982), 425–446. https://doi.org/10.1007/BF01457445
- R. Greene and S. G. Krantz, Stability of the Caratheodory and Kobayashi metrics and applications to biholomorphic mappings, Proceedings of Symposia in Pure Math. Providence: AMS 41 (1984), 77–94.
- R. Greene and S. G. Krantz, Normal Families and the Semicontinuity of Isometry and Automorphism Groups, Math. Z. 190 (1985), 455–467. https://doi.org/10.1007/BF01214745
-
K. Grove and H. Karcher, How to conjugate
$C^1$ -close group actions, Math. Z. 132 (1973), 11–20. https://doi.org/10.1007/BF01214029 - Sh. Kobayashi, Hyperbolic Complex Spaces, Springer-Verlag, 1998
- D. Ma, Upper semicontinuity of isotropy and automorphism groups, Math. Ann. 292 (1992), 533–545. https://doi.org/10.1007/BF01444634
- D. Montgomery, L. Zippin, Topological transformation groups, Interscience, New York, 1955
- R. Palais, Equivalence of nearby differentiable actions of a group, Bull. Amer. Math. Soc. 67 (1961), 362–364 https://doi.org/10.1090/S0002-9904-1961-10617-4
- E. Peschl and M. Lehtinen, A conformal self-map which fixes 3 points is the identity, Ann. Acad. Sci. Fenn., Ser. A I Math. 4 (1979), no. 1, 85–86.
- R. Saerens and W. R. Zame, The isometry groups of manifolds and the automor-phism groups of domains, Trans. Amer. Math. Soc. 301 (1987), 413–429 https://doi.org/10.1090/S0002-9947-1987-0879582-X
- A. E. Tumanov and G. B. Shabat, Realization of linear Lie groups by biholomor-phic automorphisms of bounded domains, Funct. Anal. Appl. (1990), 255–257. https://doi.org/10.1007/BF01077979
피인용 문헌
- The automorphism groups of domains in complex space: a survey vol.36, pp.2, 2013, https://doi.org/10.2989/16073606.2013.779982
- Model domains in ℂ3with abelian automorphism group vol.59, pp.3, 2014, https://doi.org/10.1080/17476933.2012.734505