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ROTATIONALLY INVARIANT COMPLEX MANIFOLDS

A. V. IsAEV

ABSTRACT. In this paper we discuss complex manifolds of dimen-
sion n > 2 that admit effective actions of either U, or SU, by
biholomorphic transformations.

0. Introduction

Let M be a connected complex manifold of dimension n > 2. It
is natural to attempt to describe manifolds M that admit actions by
biholomorphic transformations of the product of unitary groups U,, x
oo x Uy, where ng +---+ng =nand n; > 1for j =1,...,k. The
special case of k = n and n; = 1 for all j, corresponds to an action of
the torus T™ on M. Under certain conditions such an action is known
to be linearizable, which means that M is biholomorphically equivalent
to a Reinhardt domain in C™ [1].

The other extreme is k = 1, in which case M admits an action of
the group U, by biholomorphic transformations. It is natural to think
that elements of U,, act on M by a kind of “rotations”, and we therefore
term such manifolds rotationally invariant. We also include in this class
manifolds that admit actions of the special unitary group SU,.

If G is a Lie group and Aut (M) is the group of biholomorphic auto-
morphisms of M equipped with the compact-open topology, an action
of G on M by biholomorphic transformations is a real-analytic map

:Gx M- M,

such that for every g € G we have ®(g,-) € Aut (M), and the induced
mapping ¥ : G — Aut (M), g — ®(g,-) is a homomorphism. If the
kernel of ¥ is trivial, the action is called effective. For an effective
action, Aut (M) contains a subgroup isomorphic to G (note that ¥ is
continuous).
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In [8] we classified all n-dimensional complex manifolds that admit
effective actions of U,. One motivation for our study there was the
following characterization of the complex space C" obtained as a result of
the classification. Let M be a connected complex manifold of dimension
n and assume that the groups Aut(M) and Aut(C™) are isomorphic as
topological groups; then M is biholomorphically equivalent to C™.

Another motivation arises from our earlier work in [7] and [3]. In [7]
we, in particular, classified all Kobayashi-hyperbolic manifolds for which
dim Aut (M) > n?. The automorphism group dimension n? appears to
be critical for obtaining such classifications: it looks entirely impossible
to produce a classification for dimensions less that n? and quite hard
for dimension equal to n?. In fact, we have been able to produce a
classification for dim Aut (M) = n? only in the case of hyperbolic Rein-
hardt domains [3]. Since dimU,, = n?, if M admits an effective action
of Uy, we have dim Aut (M) > n?, and hence a classification of such
manifolds might provide interesting examples of manifolds with critical
automorphism group dimension n?. Note that for the purposes of this
classification we no longer assumed hyperbolicity of M in [8]. We re-
produce our classification from [8] in Section 1 below. The classification
includes, in particular, quotients of Hopf manifolds with transitive U,-
actions (Theorem 1.7). There are many effective transitive Uy,-actions on
such quotients, and we included in Section 1 our previously unpublished
description of all such actions (see Propositions 1.3 and 1.5).

Actions of the group SU, on real manifolds have been studied ex-
tensively. One motivation for such studies is the importance of SU,-
actions in physics, especially in the case of small values of n (see, e.g.,
[11]). SUp-actions have also been of interest to mathematicians, and
various classification results for such actions have been obtained (see,
e.g., [5], [6], [12]). There is, however, no complete classification for the
case of SU,-actions by biholomorphic transformations on complex man-
ifolds. The best result towards such a classification was obtained in [16],
where all real compact connected orientable manifolds of dimension 2n
admitting actions of SU,, were determined for n > 5.

In collaboration with N. Kruzhilin, we have recently obtained a clas-
sification of all n-dimensional complex manifolds that admit effective
actions of SU,, by biholomorphic transformations. In this paper we only
describe all possible dimensions of orbits of such actions and make initial
steps towards obtaining the complete classification (see Section 2). The
final classification will appear elsewhere. In Section 3 we also discuss
examples of manifolds that admit SU,-actions, but not U,-actions.
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Before proceeding, we remark that one can attempt to obtain clas-
sifications analogous to ours in more general settings, for example, for
groups U, and SU, acting on k-dimensional complex manifolds with
k # n. In fact, it can be shown that effective actions of either U, or
SU, do not exist on manifolds of dimension k& < n. Thus, our classi-
fications are obtained for the smallest possible dimension of manifolds
for which there are effective actions. Another generalization is possi-
ble if one considers not necessarily effective actions, e.g., actions with
non-trivial discrete kernel. In Section 3 we give some examples of man-
ifolds admitting such SU,-actions. Generalizing our proofs to obtain a
complete classification in this situation is not straightforward.

1. U,-actions

In this section we reproduce our classification from [8]. We start with
a description of all possible dimensions of orbits.

PROPOSITION 1.1. Let M be a connected complex manifold of di-
mension n > 2 endowed with an effective action of U, by biholomorphic
transformations. Let p € M and let O(p) be the Uy-orbit of p. Then
O(p) is either

(i) a single point, or

(ii) the whole of M, or
(iii) a real compact hypersurface in M, or
(iv) a complex compact hypersurface in M.

REMARK 1.2. For actions with fixed points (Case (i) of Proposition
1.1), the complete classification was obtained in [9] (see Folgerung 1.10
there). Namely, if M admits an effective action of U, with a fixed point,
then M is biholomorphically equivalent to either

(i) the unit ball B™ C C*, or
(ii) C™, or
(iii) CP™.
The biholomorphic equivalence f can be chosen to be an isomorphism
of U,-spaces, more precisely,

flgq) = (9)f(q),

where either v(g) = g or v(g) = g for all g € U, and ¢ € M (here B™,
C™ and CP" are considered with the standard actions of Uy).
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Suppose now that M is homogeneous under the Uy,-action (Case (ii)
of Proposition 1.1). We start with an example of such a manifold.

Let d € C\ {0}, |d] # 1, let M} be the Hopf manifold constructed
by identifying z € C™ \ {0} with d - z, and let [z] be the equivalence
class of z. Choose a complex number X such that G%Kﬂ) = d for some
K € Z\ {0}. We define an action of U, on M} as follows. Let A € U,.
We can represent A in the form A = e - B, where t € R and B € SU,,.

Then we set
(L.1) Alz] := [N - Bz].

Of course, we must verify that this action is well-defined. Indeed,
the same element A € U, can be also represented in the form A =

ei(t+ 3 f2nl) (e e B),0 <k <n-—1,1€Z. Then formula (1.1) yields

_27:11'sz] _ [dkK+nKle)\t . BZ] — [e/\t . BZ]

A[z] — {e/\(t+2%k+27rl) e

It is also clear that (1.1) does not depend on the choice of representative
in the class [z].

The action in question is obviously transitive. It is also effective. For
let e - B[z] = [2] for some ¢t € R, B € SU,, and all z € C*\ {0}. Then,

2nik

for some k € Z, B=¢€"n

-id, and some s € Z the following holds

2nrik
eM.eTn = d°.

Using the definition of A we obtain

2rs 2wk _ 2mis
= —\ € n —= e nK

nK’
Hence € - B = id, and thus the action is effective.

Another example is provided by quotients of Hopf manifolds M} /Zp,
obtained from M} by identifying [z] and [e% z], m € N. Let {[z]} €
M3} /Zm be the equivalence class of [z]. We define an action of U, on
M} /Zy, by the formula g{[z]} := {g[z]} for ¢ € U,. This action is

clearly transitive; it is also effective if, e.g., (n,m) = 1 and (K, m) = 1.
. ) . 2m(A—i)
One can consider more general actions by choosing A such that e™ »

= d¥, but not all such actions are effective. It is in fact possible to give
a complete description of all effective transitive U,-actions on quotients
of Hopf manifolds as shown in the following two propositions.

PROPOSITION 1.3. If M} /Z,, admits an effective action of U, by
biholomorphic transformations, then (n,m) = 1. Further, every effective
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transitive action of U, on M} /Zy, by biholomorphic transformations has
either the form

(1.2) A{l2]} = {[ei<1+<r+ﬁ>">td%%030—lz} }
or the form
(1.3) A{2]} = {[ei(‘H(”ﬁ‘)")td%C_gc_lzJ},

where A € U, is represented as A = ¢ - B witht € R and B € SU,,
A{[2]} denotes the action of A on {[z]} € M}/Zm, r,p,q € Z, q # 0,
C € GL,(C).

Proof. As we noted in the proof of Theorem 4.5 in (8], Aut(M}/Zy,)
is naturally isomorphic to QF,, := (GLx(C)/H)/Zy,, where H := {d* -
id, k € Z} and Z, is identified with with the subgroup of GL,(C)/H
that consists of elements of the form em H , L€ Z.

We will now find maximal compact subgroups of Q;‘,m. First, consider
the subgroup G C GL,(C), G := {d*-id,t € R}. Then the subgroup
K C GL,(C)/H, K := G/H, is isomorphic to S*. We also denote by
K the natural embedding of K in Qim: 9~ 9Zm, g € K. Further,
consider the natural embedding of Uy, in GL,(C)/H: g+~ gH, g € Uy.
Then (U,/Zy,) - K is a maximal compact subgroup of Q7 We note
that (U, /Zm)NK = {e}. Any other maximal compact subgroup of Qi
has the form so(Un/Zm)sO'1 - K, where so € Qg -

Suppose now that we are given an cffective action of U, on M} /Zn,
by biholomorphic transformations. Clearly, the action induces an em-
bedding 7 : Uy — Qf ,,. Since 7(Uy) is a compact subgroup of Q7 .
we have 7(Un) C 80(Upn/Zm)sy" - K for some sy € Q7 - Consider the
restriction of 7 to SU,. Since there does not exist a nontrivial homo-
morphism of SU, to S, we have 7(SU,) C so(Un/Zm)sy*. Since the
action is effective, 7(SUy) is isomorphic to SU,. Clearly, so(Un/Zm)sy*
contains a subgroup isomorphic to SU, if and only if (n,m) = 1, in
which case 7(SUp) = s0SUns, 1. where in the right-hand side SU, is
embedded in QF,, in the natural way. Hence there exists an automor-
phism v of SU, and D € GL,(C) such that B{[z]} = {[Dy(B)D %]}
for all z € C*\ {0} and B € SU,,.

Every automorphism of SU,, has either the form

(1.4) B+ hoBhg?,
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or the form
(1.5) B — hoBhy*,

for some hy € SU, (see, e.g., [17]). If v has the form (1.4), then there
exists C € GLy(C) such that B{[z]} = {[CBC~12]} for all z € C"\ {0}
and B € SU,. If v has the form (1.5), then there exists C € GL,(C)
such that B{[z]} = {[CBC~1z]} for all 2 € C"\ {0} and B € SU,,.

Consider first the case corresponding to (1.4). Consider the restric-
tion of 7 to the center Z of U,,. Clearly, there exist homomorphisms 7 :
Z — Z[Lym and 15 : Z — K such that 7(g) = 71(g) - 72(g) for all g € Z.
Obviously, there exists o € R such that 7 (e? - id) = ((e"¢ - id)H)Zy,.
Further, there exists y € R such that m(e® - id) = (d**H)Z,,. Since
72(e’ -id) = 7p(e'*2m) . id), p has to be of the form p = £ for some
R € Z. Further, since 1y is trivial on the center of SU,, we get R = ngq,
q € Z. Since the action is transitive, g # 0.

Let A € U,. Represent it in the form A = ¢ - B, where t € R,
B € SU,. Then for every z € C"\ {0} we have

A{[=]} = (" B){[]} = e"(B{[2]})

ngt

(16) = e{[CBC L2} = { [eta® cBY 14|}

_2mik

Representing A as A = gilt+2RE+2ml) (e "n -B) with k,[ € Z, we obtain
from (1.6) that o has to be of the form ¢ = 1+ (r+£)n for some r, p € Z.
This gives (1.2).

Similarly, the case corresponding to (1.5) leads to (1.3).

The proposition is proved. O

REMARK 1.4. For n = 2 every action of the form (1.3) is in fact an
action of the form (1.2).

We will now find necessary and sufficient conditions for actions of
each of the form (1.2) and (1.3) to be effective. The answer is given by
the following proposition.

PROPOSITION 1.5. We have:
(i) Action (1.2) is effective if and only if there do not exist L,l € 7 such
that the following conditions are satisfied:

(@) L1+ (r+ L))+ % ez

(b) —L(r+ L&)+ L ¢ 2.
(ii) Action (1.3) is effective if and only if there do not exist L,l € Z such
that (b) and the following condition are satisfied:

(€) —£(-1+(r+ L)+ XL ez
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Proof. We start from considering action (1.2). It is not effective if
and only if for some nontrivial A = e - B, t € R, B € SU,, one has
A{[z]} = {[z]} for all z € C™\ {0}. It is easy to show that this identity
is equivalent to the existence of L, € Z such that

(1.7) (L5t g5 By = dLezfnilw,

for all w € C™\ {0}. Identity (1.7) implies that B is a scalar matrix
B =" -id, v € Z, and therefore gives:

(1.8) G+ 2ynye e - 200) natp,

Identity (1.8) is equivalent to

t = 21L
(1.9) "y !
v=nS—2(1+(r+Ln)+ 7,

for some S € Z. Then A is nontrivial if and only if —%(’r +2)+ # &7
which is condition (b). Condition (a) arises from the second identity in
(1.9).

The proof in the case of action (1.3) is similar to the above.

The proposition is proved. O

The formulas from Proposition 1.3 and the conditions from Proposi-
tion 1.5 simplify for the case of Hopf manifolds (i.e., when m = 1).

COROLLARY 1.6. Every effective transitive action of U, on M}, has
either the form

(1.10) Al] = [ei(”m)td%?cm—lz] :
or the form
(1.11) Alz] = [ei(‘l*’m)td%q?tCEC_lz] )

where A € U, is represented as A = €*- B witht € R and B € SU,, A[Z]
denotes the action of A on [z] € M}, r,p,q € Z, ¢ # 0, C € GL,(C).
Action (1.10) is effective if and only if there does not exist L € Z such
that q divides L(1+rn), but does not divide Lr. Action (1.11) is effective
if and only if there does not exist L € Z such that g divides L(—1+rn),
but does not divide Lr.

As we have seen above, there is no canonical transitive effective U,,-
action on a quotient of a Hopf manifold. This explains why the following
theorem deals with SU,-equivariance rather than U,-equivariance of the
equivalence mapping.
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THEOREM 1.7. Let M be a complex manifold of dimension n > 2
endowed with an effective transitive action of U, by biholomorphic
transformations. Then M is biholomorphically equivalent to a Hopf
manifold M} /Z,,, where m € N and (n,m) = 1. The equivalence
f M — M} /Z,, can be chosen to satisfy either the relation

(1.12) flg99) = gf(q),
or, for n > 3, the relation
(1.13) f(9a) =39f(q),

for all g € SU, and q € M (here M} /Z, is considered with the standard
action of SU,).

We now turn to the case when all orbits of the U,-action on M are
real hypersurfaces (Case (iii) of Proposition 1.1). All such manifolds are
classified in the following '

THEOREM 1.8. Let M be a connected complex manifold of dimen-
sion n > 2 endowed with an effective action of U, by biholomorphic
transformations. Suppose that all orbits of this action are real hyper-
surfaces. Then there exists k € Z such that, for m = |nk + 1|, M is
biholomorphically equivalent to either

(1) Sy r/Zm, where Sl'p :={2 € C":r <|z| < R}, 0 <r < R < o0,

is a spherical layer, or
(i) M} /Zp,.
The biholomorphic equivalence f can be chosen to satisfy either the
relation

(1.14) fl99) = ¢4, (9) F(0),
or the relation
(1.15) f(99) = ¢n10. (@) f(a),

for all g € U, and q € M, where ¢ m is the isomorphism

G Un/Zm — Up,  Gnm(AZy) = (det A)F- A,  AeUp,,
and S?,R/ Zym and M} /Z,, are equipped with the standard actions of
Un/Zm.

We will now also include complex hypersurface orbits (Case (iv) of
Proposition 1.1). First we introduce some notation. Let B, C" and

CP" denote the blow-ups at the origin of B", C" and CP™ respectively.
Let ST, be the union of the spherical layer with infinite outer radius
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S 7 2 0, and the hyperplane at infinity in CP". Further, for m e N
denote by @’/Zm, @/Zm, @lﬁ/Zm and S’Z‘_;/Zm the quotients of B™,

——

C", CP" and S}, by Zm respectively. Then we have the following

THEOREM 1.9. Let M be a connected complex manifold of dimension
n > 2 endowed with an effective action of U, by biholomorphic trans-
formations. Suppose that each orbit of this action is either a real or
complex hypersurface and at least one orbit is a complex hypersurface.
Then there exists k € Z such that, for m = |nk + 1|, M is biholomor-
phically equivalent to either

(i) B"/Zp,, or
(i) C*/Zm, or
(iii) CP?/Zu, or
(iv) SPoo/Zm, 0 <1 < 0.
The biholomorphic equivalence f can be chosen to satisfy either (1.14)
or (1.15) for all g € U, and g € M.

Thus, Remark 1.2 and Theorems 1.7, 1.8 and 1.9 give a complete
classification of all complex manifolds of dimension n > 2 that admit
effective actions of U, by biholomorphic transformations.

2. Dimensions of orbits of SU,-actions

The goal of this section is to determine all possible dimensions of
orbits of an effective action of SU,, on M and to obtain some preliminary
results towards a complete classification. We start with the following
proposition which is analogous to Proposition 1.1.

PROPOSITION 2.1. Let M be a connected complex manifold of dimen-
sion n > 2 endowed with an effective action of SU, by biholomorphic
transformations. Let p € M and let O(p) be the SUy-orbit of p. Then
O(p) is either

(i) a single point, or

(ii) the whole of M, or
(iii) a compact real hypersurface in M, or
(iv) a compact complex hypersurface in M.

Proof. For p € M let I, be the isotropy subgroup of SUy, at p, i.e.,
I, := {g € SU, : gp = p}. We denote by ¥ the continuous homomor-
phism of SU, into Aut(M) induced by the action of SU, on M. Let
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Ly :={d,(¥(g)) : g € I} be the linear isotropy subgroup, where dpf is
the differential of a map f at p. Clearly, L, is a compact subgroup of
GL(Tp(M),C). Since the action of SU,, is effective, L,, is isomorphic to
I,. The isomorphism is given by the map

(2.1) aly =Ly alg) = dy(¥(g))

Let V C T,(M) be the tangent space to O(p) at p. Clearly, V is Ly
invariant. We assume now that O(p) # M (and therefore V # To(M))
and consider the following three cases.

L. d:=dimc(V +:V) < n.

Since Ly, is compact, one can choose coordinates in T,,(M) such that
Ly C Uy. Further, the action of L, on T,(M) is completely reducible
and the subspace V 4 iV is invariant under this action. Hence L, can in
fact be embedded in Uy x Up_q C GL(T,(M),C). Since dim O(p) < 2d,
it follows that

n2—1§d2+(n—d)2+dim0(p)§d2+(n~d)2+2d,

and therefore either d = 0 or d = n — 1. If d = 0, we obtain (). If
d = n — 1, then either dim O(p) = 2n — 2 or dimO(p) = 2n — 3. For
dim O(p) = 2n — 2 we have iV =V, which yields (iv).

Suppose now that dim O(p) = 2n—3. In this case dim I, =n?-2n+2.
Since L, can be embedded in U; x U, _1, it follows that L, — and hence
I, — are isomorphic to Uy x Uy, _1. It is now clear from Lemma 2.1 of [7]
that I, is conjugate in U, to Uy x U,_; (realized in the block-diagonal
form in the obvious way). But this is impossible since then I, is not
contained in SU,. Hence, in fact, dim O(p) # 2n — 3.

IL. Tp(M) = V + 4V and r := dim¢e(V N4V) > 0.
As above, L, can be embedded in U, x U, , (clearly, we have r <

n). Moreover, V NiV # V and since L, preserves V, it follows that
dim L, < 72+ (n — r)2. We have dim O(p) < 2n — 1, and therefore

n?—1 <r2+(n—r)2+dim0(p) <r’4(n-r?+2n-1,
which shows that either dim O(p) = 2n — 1 or dim O(p) = 2n — 2.
The case dim O(p) = 2n — 1 yields (iii).
Assume now that dim O(p) = 2n — 2. Then dim I, = (n—1)? and by

Lemma, 2.1 of (8], I7, the connected component of the identity in I, is
conjugate in SU,, to the group H" of all matrices of the form

(2.2) ( l/dgztB jg)’
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where B € U,_1. Therefore, I, contains the center of SU,. Let g # id
be an element of this center. Then g acts trivially on O(p), i.e., g¢ = ¢
for all ¢ € O(p). Therefore, a(g)(v) = v for all v € V, where a is
the isomorphism defined in (2.1). Since T,(M) = V + iV and a(g) is
complex-linear on T,(M), it follows that a(g) = id and g = id, which is
a contradiction. Hence dim O(p) # 2n — 2.

III. T,(M) =V @iV.

In this case dim V = n and L, can be embedded in the real orthogonal
group Oy (R), therefore

n(n — 1)

dim L, + dim O(p) < — +n.

Thus, for n > 3 we have dim L, + dim O(p) < n? — 1 which is a contra-~
diction. Assume now that n = 2. In this case dimI, = 1 = (n — 1)
and we arrive at a contradiction by arguing as in II above.

The proof of the proposition is complete. O

The case of an action with a fixed point (Case (i) in Proposition 2.1)
easily follows from the results in [4] and [2] as shown in the following
proposition.

PROPOSITION 2.2. Let M be a complex manifold of dimension n > 2
endowed with an effective action of SU, by biholomorphic transforma-
tions that has a fixed point in M. Then M is biholomorphically equiv-
alent to either

(i) the unit ball B® C C", or
(it) C™, or
(iii) CP™.
The biholomorphic equivalence f can be chosen to satisfy either relation
(1.12) or, if n > 3, relation (1.13) for all g € SU,, and q € M (here B™,
C™ and CP" are considered with the standard action of SU,,).

Proof. Let p be a fixed point of the action of SU, on M. Then
I, = SU,. Let L, be as above the linear isotropy subgroup. Clearly,
L, is also isomorphic to SU,. Since L, is a compact subgroup of
GL(T,(M),C), one can find coordinates in T,(M) such that L, C U,.
In these coordinates L, = SU, (note that SU, can be embedded in U,
in the unique way). The group SU,, acts transitively on the unit sphere
in T,(M).

Assume first that M is non-compact. Then by [4] the manifold M is
biholomorphically equivalent to either B™ or C", and a biholomorphism
F may be chosen to satisfy F(gq) = v(g)F(q) for all g € SU, and g € M,
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and some automorphism ~ of SU,,, where the action of SU,, on C" in the
right-hand side is standard. Every automorphism of SU,, has either the
form (1.4) or the form (1.5) with hg € SU,,. Thus, setting f = ﬁal oF,
where iAzo is the automorphism of B™ or C" induced by hg, we obtain
either (1.12) or (1.13), respectively.

Assume now that M is compact. Then by [2] M is biholomorphically
equivalent to CP". We will now show that a biholomorphism between
M and CP" can be chosen to satisfy (1.12) or (1.13).

The action of SU,, on M induces an embedding 7 : SU,, — Aut(CP"),
and 7(SU,) has a fixed point in CP™. Therefore, 7(SU,,) is conjugate in
Aut(CP") to SU,, embedded in Aut(CP") in the standard way. Hence
there exists an automorphism ~y of SU,, such that for some s € Aut(CP")
we have (s o F)(gq) = v(g)(s o F)(q) for all g € SU,, and ¢ € M, where
the action of SU,, on CP™ in the right-hand side is standard. We again
use that v has an explicit expression as in (1.4) or (1.5) and setting
f= ilal o so F obtain either (1.12) or (1.13), respectively.

The proof is complete. O

We will now show that Case (ii) in Proposition 2.1 in fact does not
realize. First we need the following

LEMMA 2.3. Let G be a connected closed subgroup of SU,, of dimen-
sion n? — 2n — 1, n > 3. Then either
(i) n = 3 and G is conjugate in SU; to (Uy x U x U1) N SUs embedded
in SU3 in the standard way, or
(ii) n = 4 and G is conjugate in SU, to (Uy x Uy) N SU; embedded in
SUy in the standard way.

Proof. Since G is compact, it is completely reducible, i.e., C* decom-
poses into a sum of G-invariant pairwise orthogonal complex subspaces,
C"=Vi®--- @V, such that the restriction G; of G to every Vj is
irreducible. Let n; := dimcV; (hence ny + -+ +ny, = n) and let Un, be
the unitary transformation group of V;. Clearly, G; C Uy, and there-
fore dim G < n% + -+ n?n On the other hand dim G = n? — 2n — 1,
which shows that m < 2 for n # 3. If n = 3, then it is also possible that
m = 3, which means that G is conjugate in SUs to (Uy x Uy x Uy) N SU3
embedded in Us in the standard way.

Now let m = 2. Then either n = 4 and G is conjugate in SUy to
(Uz x Up) N SU,4 embedded in SUy in the standard way, or G is conjugate
in SU, to a subgroup G of the group H™ defined in (2.2). The group
H™ has dimension (n — 1)? and is isomorphic to U,_; in the obvious
way. Hence G is isomorphic to a subgroup of U, of codimension 2. It
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was shown in Lemma 2.1 in [7] that U,_1 does not have subgroups of
codimension 2 unless n = 3, in which case G is conjugate to the group
(U1 x Uy x U1) N SU3. But this is impossible since for this group m = 3.

Let m = 1. We proceed as in the proof of Lemma 2.1 in {8]. Let
g C su, C sl, be the Lie algebra of G and g® := g + ig C sl, its
complexification. Then g€ acts irreducibly on C* and by a theorem of
E. Cartan is semisimple.

Let g€ = g, @ - - @ gk be the decomposition of g€ into the direct sum
of simple ideals. Then the irreducible n-dimensional representation of
g given by the embedding of g€ in gl is the tensor product of some
irreducible faithful representations of the g;. Let n; be the dimension
of the corresponding representation of g;, j = 1,...,k. Then n; > 2,
dimc g; Sn?—l,andn=n1-~--nk.

Since dimg¢ g€ = n? — 2n — 1, it follows from the claim in the proof of
Lemma 2.1 in [8] that k = 1, i.e., g€ is simple. The minima)] dimensions
of irreducible faithful representations of complex simple Lie algebras are
well-known. It then follows that a simple complex Lie algebra of dimen-
sion n% —2n—1 cannot have an n-dimensional irreducible representation.
Hence, in fact, m # 1.

The lemma is proved. O

The following theorem is an easy consequence of Lemma, 2.3.

THEOREM 2.4. There exists no real manifold of dimension 2n > 4
admitting an effective transitive action of SU,,.

Proof. Let M be the manifold, p € M and I, be as before the isotropy
subgroup of p. Obviously, dim I, = n? — 2n — 1 (clearly, we have n > 3).
Therefore, from Lemma 2.3 we see that either n = 3 and I} is conjugate
in SU3 to (Uy x Uy x U1) N SU3 embedded in SUs in the standard way,
or n = 4 and Ig is conjugate in SUy to (Uy x Us) N SU4 embedded in
SU, in the standard way. In these cases, however, I7 clearly contains
the center of SU,, for n = 3,4, and hence the action of SU,, on M is not
effective.

This contradiction proves the theorem. O

REMARK 2.5. Theorem 2.4 for 2n > 10 for not necessarily effective
actions follows from the classification in [16].

We will conclude this section with the following theorem.

THEOREM 2.6. Let M be a connected complex manifold of dimen-
sion n > 2 endowed with an effective action of SU, by biholomorphic
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transformations with no fixed points. Let p € M and let O(p) be the
SUp-orbit of p. Then O(p) is either
(i) a strongly pseudoconvex compact real hypersurface in M, or
(ii) a compact complex hypersurface in M holomorphically equivalent
to CP"~ 1,

Moreover, there exist no more than two complex hypersurface orbits.

Proof. We will first show that a real hypersurface orbit has to be
strongly pseudoconvex. The proof is similar to that of Proposition 2.2 in
[8]. We show first that O(p) is either Levi-flat or strongly pseudoconvex.
This is obvious for n = 2 since O(p) is a homogeneous real hypersurface
and the corresponding Levi form has only one eigenvalue.

Assume now that n > 3. Since O(p) is a real hypersurface in M, it
arises in II of the proof of Proposition 2.1. Let W be the orthogonal
complement to V N4V in T,(M). Clearly, dim¢V NiV = n -1 and
dim¢ W = 1. The group L, is a subgroup of U, and preserves both
VNV and W. In addition, it preserves V and hence the line W N V.
Therefore, it can only act as +id on W. Thus, the identity component
L3 of Ly is a subgroup of the group of unitary transformations preserving
V NV and acting trivially on W. Since dim L, = n? — 2n, Ly is
isomorphic to SU,_; and acts transitively on V N+V. Therefore, either
all eigenvalues of the Levi form vanish or they all are of the same sign,
which means that O(p) is either Levi-flat, or strongly pseudoconvex.

Assume that O(p) is Levi-flat. Then it is foliated by complex hyper-
surfaces in M. Let m be the Lie algebra of all holomorphic vector fields
on O(p) corresponding to the automorphisms of O(p) generated by our
action of SU,,. Clearly, m is isomorphic to su,. Let M, be the leaf of the
foliation passing through p, and consider the subspace { C m of vector
fields tangent to M, at p. The vector fields in [ remain tangent to M,
at each point g € M, and therefore [ is in fact a Lie subalgebra of m.
However, dim [ = n? — 2 and su,, has no subalgebras of codimension 1.

Hence O(p) must be strongly pseudoconvex, as required.

We will now show that a complex hypersurface orbit is holomorphi-
cally equivalent to CP". Let O(p) be a complex hypersurface orbit. As
we saw in I of the proof of Proposition 2.1, L, can be embedded into
Ui x Uy_;. Clearly, dim L, = (n — 1)?, and by Lemma 2.1 of [8§], Ly is
conjugate in U, to the group H". Hence the restriction of L, to V is
Urn—1 and therefore L, acts transitively on the unit sphere in V. Since
O(p) is compact, it now follows from [2] that O(p) is holomorphically
equivalent to CP*~ 1,
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We will now show that there can be no more than two complex hy-
persurface orbits. First of all, there is a real hypersurface orbit in M.
Indeed suppose that all orbits in M are complex hypersurfaces. Let
p € M and consider the isotropy group I, of p. Then dimI, = (n — 1)?
and therefore, by Lemma 2.1 of [8], I} is conjugate to the group H"
defined in (2.2) and hence contains the center of SU,. Therefore, if all
orbits were complex hypersurfaces, the SU,-action would not be effec-
tive on M. Hence, there is a real hypersurface orbit in M.

Let O C M be a complex hypersurface orbit, and we assume that
there is at least one other complex hypersurface orbit. Consider M’ :=
M\ O. The manifold M’ is non-compact, equipped with an action of the
compact group SU, and has a real hypersurface orbit. It now follows
from the results in [13] (see Theorem 3 and Corollary 5.8 there) that M’
has exactly one complex hypersurface orbit. Hence, M has exactly two
such orbits.

The theorem is proved. O

To obtain a complete classification of effective SU,-actions, one now
needs to classify real hypersurface orbits and to glue them together with
copies of CP* 1. This is not an objective of the current paper, and the
final classification will appear in our future publication.

3. Examples of SU,-actions

We start this section with examples showing that there are indeed
more manifolds that admit effective actions of SU,, than those that admit
effective actions of U,,. These examples are in dimension n = 2.

Recall the construction of a non-standard complex structure on CP?\
{0} given by Rossi in [14]. Let (wg : wy : wy : w3) be homogeneous
coordinates in CP3. Consider in CP? the variety V' given by the equation

(3.1) wiwz = ws(ws + wo).

Let (2g : 21 : 22) be homogeneous coordinates in CP2. We consider the
map F : CP?\ {0} — V defined by the formulas

w0=z§,
2 2122 2
wy =2y — —5——=2
1 1 ]2112_4_ ’22|2 0
2 £1%2 2
Wy = 25 + ———5 2,
RN PP
22| 2
Wy = 2129 —

—_—2n.
|21]2 + 222 7°
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The map F is everywhere 2-to-1, and its image is V'\ S, where S is given
by:

(3.2) wo = 1, , We = —Wi, wsy € R.

The set SNV is the limit set of the mapping F at 0.

Consider the unique complex structure on CP?\ {0} making F locally
biholomorphic. We denote CP?\ {0} with this new complex structure by
X. Clearly, SU; acts effectively on X by diffeomorphisms in the usual
way: for (z0: 21 : z2) € X and g € SU; we have

9(z0: 211 29) := (20 : uy : ug),

where (u1,u2) := g(z1,22). It can be verified directly that this is an
action by biholomorphic automorphisms of X. Let 6% be the sphere of
radius R in X. It is an SUs-orbit in X and therefore the CR-structure
it has as a real hypersurface in X is invariant under the standard action
of SUs. It follows from the results of [14] (see also [15]) that none of the
6% is CR-equivalent to the ordinary sphere S3 and hence none of the
&% is spherical.

Further, it can be shown (directly or using an approach based on
classifying algebras, as in [10]) that a CR-structure on S2 invariant under
the standard action of SU; is equivalent to either the standard CR-
structure or to the CR-structure of one of 63;2 by means of an SU;-
equivariant CR-diffeomorphism, and the manifolds &3, 0 < R < oo, are
pairwise non-CR-equivalent.

Further, it can be checked directly that the hyperplane P at infinity
in X is in fact a complex curve in X equivalent to CP! and at the same
time is an SU,-orbit.

Denote by (‘52’ r» 0 <7 < R < oo, the spherical layer Sfy g equipped
with the non-standard complex structure induced by the complex struc-

ture of X and by G%Oo, r > 0 a spherical layer with infinite outer radius
with added hyperplane at infinity P. Then Gf, pr0<r<R<o0is
an example of a manifold that admits an effective SUs-action, does not

admit an effective Us-action and for which all orbits are real hypersur-
faces. Clearly, &2

7,00

hypersurface orbit.
We now give examples of manifolds with non-effective SU,-actions

that have a discrete kernel. Let z = (21, 29, 23) be coordinates in C3,

Consider the quadric Q C C3 given by

is an analogous example with a unique complex

zf+z§+z§:1.
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Clearly, the group SO;3(C) acts transitively on Q. It is known that
S03(C) is isomorphic to SLy(C)/Z2 (here we write Zy for the center
of SLy(C)). Hence, SLy(C)/Zy acts transitively on . The isotropy
subgroup under this action is GL1(C)/Z;. Hence

Q = (SL2/Z2) / (GL1(C)/Zy) = SLy(C)/GL1(C),

and hence SL2(C) acts transitively on @) with isotropy subgroup GL;(C).

Consider the induced action of SUs on Q. This action is not effective
since the isotropy subgroup of any point in Q) contains the center of SU,.
Let 2% € Q. If Im 2° # 0, then the SUs-orbit of 20 is a real hypersurface
in Q. All points 2° with Imz; = 0 lie on a single orbit O that has
codimension 2 in Q). However, this orbit is not a complex curve in Q, it
is in fact totally real in Q.

We remark here that quadric @ by an affine change of coordinates
is equivalent to the finite part of quadric V' given by (3.1). Under this
change of coordinates @\ O is mapped onto V'\ S. Then the SUs-action
on @\ O can be lifted to X \ P. The result of this lift is precisely the
restriction to X \ P of the SUs-action on X introduced above.

Another example of a non-effective action in dimension n = 2 can
be constructed as follows. Let M = CP2. Consider the adjoint repre-
sentation of SUz, Ad : SU; — GL(suy), and for every g € SU, view
Ad(g) as a transformation of C®. Define an action of SUs on M by
applying Ad(g) to vectors of homogeneous coordinates. This action is
not effective since Ad(—id) = Ad(id) is the identity transformation, and
thus the center of SU; acts trivially on M. In this example, as in the
preceding one, there is an orbit of codimension 2 that is not a complex
curve in M, but is totally real.

More examples of manifolds with non-effective SU,-actions for any
n > 2 can be constructed by setting M = CP*! x C, where C is a
complex curve. Let SU, act on CP"~! by applying matrices from SU,,
to vectors of homogeneous coordinates, and let SU,, act on C trivially.
The resulting action is not effective on M since every element of the
center of SU, acts by the identity transformation. The orbit of every
point is equivalent to CP?1.
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