DOI QR코드

DOI QR Code

PROPER HOLOMORPHIC MAPPINGS, POSITIVITY CONDITIONS, AND ISOMETRIC IMBEDDING

  • D'Angelo, John P. (Department of Mathematics University of Illinois)
  • Published : 2003.05.06

Abstract

This article discusses in detail how the study of proper holomorphic rational mappings between balls in different dimensions relates to positivity conditions and to isometric imbedding of holomorphic bundles. The first chapter discusses rational proper mappings between balls; the second chapter discusses seven distinct positivity conditions for real-valued polynomials in several complex variables; the third chapter reveals how these issues relate to an isometric imbedding theorem for holomorphic vector bundles proved by the author and Catlin.

Keywords

References

  1. E. Calabi, Isometric imbedding of complex manifolds, Ann. Math. 58 (1953), 1-23. https://doi.org/10.2307/1969817
  2. D. W. Catlin, The Bergman kernel and a theorem of Tian, pp. 1-23, in Analysis and Geometry in Several Complex Variables, Trends in Math, Birkhauser, Boston, 1999
  3. D. W. Catlin and J. P. D'Angelo, A stabilization theorem for Hermitian forms and applications to holomorphic mappings, Math. Res. Lett. 3 (1996), 149-166. https://doi.org/10.4310/MRL.1996.v3.n2.a2
  4. D. W. Catlin and J. P. D'Angelo, Positivity conditions for bihomogeneous polynomials, Math. Res. Lett. 4 (1997), 1-13. https://doi.org/10.4310/MRL.1997.v4.n1.a1
  5. D. W. Catlin and J. P. D'Angelo, An isometric imbedding theorem for holomorphic bundles, Math. Res. Lett. 6 (1999), 1-18. https://doi.org/10.4310/MRL.1999.v6.n1.a1
  6. J. A. Cima and T. J. Suffridge, Boundary behavior of rational proper maps, Duke Math. J. 35 (1988), 83-90.
  7. J. P. D'Angelo, Several Complex Variables and the Geometry of Real Hypersur-faces, CRC Press, Boca Raton, Fla., 1992.
  8. J. P. D'Angelo, Invariant holomorphic maps, J. Geom. Anal. 6 (1996), 163–179. https://doi.org/10.1007/BF02921598
  9. J. P. D'Angelo, Positivity Conditions for Real-Analytic Functions, Complex Analysis and Geometry, Ohio State Univ. Math. Res. Inst. Publ 9, de Gruyter, 103–123
  10. J. P. D'Angelo, Inequalities from Complex Analysis, Carus Mathematical Monographs Number 28, The Mathematical Association of America, 2002
  11. J. P. D'Angelo and D. A. Lichtblau, Spherical space forms, CR maps, and proper maps between balls, J. Geom. Anal. 2(1992), no.5, 391–416. https://doi.org/10.1007/BF02921298
  12. J. Faran, Maps from the two-ball to the three-ball, Invent. Math. 68 (1982), 441–475. https://doi.org/10.1007/BF01389412
  13. F. Forstneric, Extending proper holomorphic mappings of positive codimension, Invent. Math. 95 (1989), 31–62. https://doi.org/10.1007/BF01394144
  14. L. Lempert, Imbedding Cauchy-Riemann manifolds into a sphere, International Journal of Math. 1 (1990), 91–108. https://doi.org/10.1142/S0129167X90000071
  15. L. Lempert, Imbedding pseudoconvex domains into a ball, Amer. J. Math. 104 (1982), 901–904. https://doi.org/10.2307/2374211
  16. E. Low, Embeddings and proper holomorphic maps of strictly pseudoconvex do-mains into polydiscs and balls, Math. Z. 190 (1985), 401–410. https://doi.org/10.1007/BF01215140
  17. D. G. Quillen, On the Representation of Hermitian Forms as Sums of Squares, Invent. Math. 5 (1968), 237–242. https://doi.org/10.1007/BF01389773
  18. M. Rosenblum and J. Rovnyak, The factorization problem for nonnegative oper-ator valued functions, Bull. Amer. Math. Soc. 77 (1971), 287–318. https://doi.org/10.1090/S0002-9904-1971-12671-X
  19. W. Rudin, Function Theory in the Unit Ball of $C^n$, Springer-Verlag, New York, 1980.
  20. R. O. Wells, Differential Analysis on Complex Manifolds, Prentice-Hall, Engle-wood Cliffs, New Jersey, 1973.

Cited by

  1. Uniqueness of certain polynomials constant on a line vol.433, pp.4, 2010, https://doi.org/10.1016/j.laa.2010.04.020
  2. COMPLEX VARIABLES ANALOGUES OF HILBERT'S SEVENTEENTH PROBLEM vol.16, pp.06, 2005, https://doi.org/10.1142/S0129167X05002990
  3. COMPLEXITY RESULTS FOR CR MAPPINGS BETWEEN SPHERES vol.20, pp.02, 2009, https://doi.org/10.1142/S0129167X09005248
  4. HERMITIAN COMPLEXITY OF REAL POLYNOMIAL IDEALS vol.23, pp.06, 2012, https://doi.org/10.1142/S0129167X11007689