References
- E. Calabi, Isometric imbedding of complex manifolds, Ann. Math. 58 (1953), 1-23. https://doi.org/10.2307/1969817
- D. W. Catlin, The Bergman kernel and a theorem of Tian, pp. 1-23, in Analysis and Geometry in Several Complex Variables, Trends in Math, Birkhauser, Boston, 1999
- D. W. Catlin and J. P. D'Angelo, A stabilization theorem for Hermitian forms and applications to holomorphic mappings, Math. Res. Lett. 3 (1996), 149-166. https://doi.org/10.4310/MRL.1996.v3.n2.a2
- D. W. Catlin and J. P. D'Angelo, Positivity conditions for bihomogeneous polynomials, Math. Res. Lett. 4 (1997), 1-13. https://doi.org/10.4310/MRL.1997.v4.n1.a1
- D. W. Catlin and J. P. D'Angelo, An isometric imbedding theorem for holomorphic bundles, Math. Res. Lett. 6 (1999), 1-18. https://doi.org/10.4310/MRL.1999.v6.n1.a1
- J. A. Cima and T. J. Suffridge, Boundary behavior of rational proper maps, Duke Math. J. 35 (1988), 83-90.
- J. P. D'Angelo, Several Complex Variables and the Geometry of Real Hypersur-faces, CRC Press, Boca Raton, Fla., 1992.
- J. P. D'Angelo, Invariant holomorphic maps, J. Geom. Anal. 6 (1996), 163–179. https://doi.org/10.1007/BF02921598
- J. P. D'Angelo, Positivity Conditions for Real-Analytic Functions, Complex Analysis and Geometry, Ohio State Univ. Math. Res. Inst. Publ 9, de Gruyter, 103–123
- J. P. D'Angelo, Inequalities from Complex Analysis, Carus Mathematical Monographs Number 28, The Mathematical Association of America, 2002
- J. P. D'Angelo and D. A. Lichtblau, Spherical space forms, CR maps, and proper maps between balls, J. Geom. Anal. 2(1992), no.5, 391–416. https://doi.org/10.1007/BF02921298
- J. Faran, Maps from the two-ball to the three-ball, Invent. Math. 68 (1982), 441–475. https://doi.org/10.1007/BF01389412
- F. Forstneric, Extending proper holomorphic mappings of positive codimension, Invent. Math. 95 (1989), 31–62. https://doi.org/10.1007/BF01394144
- L. Lempert, Imbedding Cauchy-Riemann manifolds into a sphere, International Journal of Math. 1 (1990), 91–108. https://doi.org/10.1142/S0129167X90000071
- L. Lempert, Imbedding pseudoconvex domains into a ball, Amer. J. Math. 104 (1982), 901–904. https://doi.org/10.2307/2374211
- E. Low, Embeddings and proper holomorphic maps of strictly pseudoconvex do-mains into polydiscs and balls, Math. Z. 190 (1985), 401–410. https://doi.org/10.1007/BF01215140
- D. G. Quillen, On the Representation of Hermitian Forms as Sums of Squares, Invent. Math. 5 (1968), 237–242. https://doi.org/10.1007/BF01389773
- M. Rosenblum and J. Rovnyak, The factorization problem for nonnegative oper-ator valued functions, Bull. Amer. Math. Soc. 77 (1971), 287–318. https://doi.org/10.1090/S0002-9904-1971-12671-X
-
W. Rudin, Function Theory in the Unit Ball of
$C^n$ , Springer-Verlag, New York, 1980. - R. O. Wells, Differential Analysis on Complex Manifolds, Prentice-Hall, Engle-wood Cliffs, New Jersey, 1973.
Cited by
- Uniqueness of certain polynomials constant on a line vol.433, pp.4, 2010, https://doi.org/10.1016/j.laa.2010.04.020
- COMPLEX VARIABLES ANALOGUES OF HILBERT'S SEVENTEENTH PROBLEM vol.16, pp.06, 2005, https://doi.org/10.1142/S0129167X05002990
- COMPLEXITY RESULTS FOR CR MAPPINGS BETWEEN SPHERES vol.20, pp.02, 2009, https://doi.org/10.1142/S0129167X09005248
- HERMITIAN COMPLEXITY OF REAL POLYNOMIAL IDEALS vol.23, pp.06, 2012, https://doi.org/10.1142/S0129167X11007689