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APPROXIMATION OF NON-HOLOMORPHIC
MAPS, AND POLETSKY THEORY OF DISCS

JEAN-PIERRE ROSAY

ABSTRACT. We prove an approximation result, and we get a new
proof of the main result in [7]. I hope that this new proof may be a
step towards a generalization of the Poletsky theory of discs to the
case of almost complex manifolds.

1. A general question (to be made more precise)

The general question, vaguely stated, is: Is every map from the unit
disc into a complex manifold, with small 9, close to a genuine holomor-
phic map?

In the study of Poletsky discs, and having possible generalizations in
mind (see [8] and Section 7 below), the following question arises natu-
rally.

Let M be a complex manifold, equipped with some metric, and let
be a relatively compact region in M. For every € > 0, does there exist
d > 0 such that if u is a map from the unit disc A (in C) into Q, with
|Ou| < 8, then there exists a homomorphic map h : A — Q such that
(abusing notations) |h — u| < €?

For the application, it is absolutely essential that no bound be given
on Ou, and that no shrinking of the disc be allowed.

If we added the hypothesis |Ou| < M, then the existence (but not
an estimate!) of §, depending on €, ¢ and M, would result immediately
from a normal family argument, arguing by contradiction.

The answer to the above question is negative in general, as was shown
to me by L. Lempert. His example is natural and embarrassingly simple.
Take M any compact Riemann surface of genus > 2, and Q@ = M. See
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Section 8. However the answer is positive for M = P, (C), as was shown
to me by J. E. Fornaess (n = 1) and D. Chakrabarti.

At any rate, the general question has to be re-formulated. The result
presented in Section 2 is hopefully only a step towards a better result.
It is good enough for the first intended application, but one should
in particular try to remove the non natural hypothesis of empty triple
intersections made below.

2. A partial result (a restricted version of the question)

In Lempert’s example the difficulty for solving the approximation
problem arises even locally {at the boundary of the disc). In the intended
application to the theory of discs there is no such local obstruction,
because locally the maps to be approximated by holomorphic ones take
value in a given coordinate patch.

This leads us to consider the following approximation problem in
which the local difficulty disappears and for which we are simply left
with a gluing problem.

NOTATIONS. As before A denotes the open unit disc in C and A
will be the closed unit disc. We fix a complex manifold M of complex

dimension n, 4, ..., Qlr some open sets in M with K, ..., K compact
subsets of €, ..., g respectively. We assume that each €; is biholo-
morphic to some open set in C™. Finally we fix Uy, ... ,Ug open sets in

R
C such that & ¢ | JU;.
j=1

We assume that all triple intersections are emptyi.e. U;NU,NU; = ¢
if 7, k, £ are all distinct.

DEFINITION. A map ¢ from A into M will be called restricted if for
every j € {1,..., R}, p(U; N A) C Kj.

Of course that notion of “restricted” is relative to the above choices,
and in order that there exists any restricted map one must have K; N
Ky # ¢ if (U; NUg) N A # ¢, that we will therefore assume.

We equip M with some Riemannian metric. It allows to give meaning
to |0p| < 4 if ¢ is a map from A into M. And if f and g are maps from
A into M we set

d(f, g) = sup dist(£(¢), g(¢))-

CeA
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The choice of the metric is inconsequential.

ProproOSITION 1. With the above notations: For every € > 0, there
exists § > 0 such that if u is a restricted map from A into M satisfying
|Ou| < 6, there exists a holomorphic map h from A into M such that
d(u, h) <€, and u(0) = h(0).

3. The Cartan “Lemma” with bounds
A crucial ingredient will be the following “Lemma” proved in [2].

LEMMA [2]. Let (V])f[=1 be a covering of the closed unit disc by open
subsets of C. For each (j, k) € {1,...,N}? let g;x be a holomorphic
(nxn) matrix bounded and with bounded inverse defined on (V;NVy)NA,
with the usual cocycle conditions: g;; = 1, gx = g,;jl, 9jkGkege; =
1. Then there exist bounded holomorphic matrices g; with bounded
inverses defined on V; N A (j = 1,...,N) such that gy = gk_lgj on
(V;NVi)NA, with bounds for the g;’s and their inverses depending only
on the covering and on the sup norm of the g;;’s and of their inverses.

Having in mind possible generalizations (to the theory of discs) it
may be good to point out that an older and simpler result suffices for
establishing Proposition 2 below. Roughly speaking it consists in dealing
with a special case of Proposition 1 where U; N Uy = ¢ if both j and
k # 1, and with the major requirement that the restriction of the map u
(not h) to U3 NA is a fixed holomorphic map from Uy N A into 3 C M,
that extends continuously to Uy N A.

Then, following the proofs below, one has to find holomorphic ma-
trices g; for a fixed cocycle of holomorphic matrices gjx continuous up
to the boundary. This is essentially given by Proposition 2, page 48
in {1} (but with no bounds on the g;’s just in terms of bounds on the
gik's). It is enough to adapt slightly the proof in [1], after adding a
mild requirement on the Uj’s in order to allow the approximation of

invertible holomorphic matrices given on U (U; nU1) N A by invertible
j=>2

holomorphic matrices defined on C. Some other features of the proofs

also simplify.
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4. Proof of Proposition 1 (reduction to a nonlinear Cousin
problem)

From now on Fj will denote a fixed biholomorphism from 2; onto
an open set F;(Q;) C C* (j = 1,..., R). Shrinking the ;s if needed
with can assume that the derivatives F]’ and (Fj‘l)' have operator norms
bounded by some constant A.

A restricted map u from A into M corresponds to R maps u1,...,uR
respectively from U; N A into Fj(K;) C C™ such that on (U; NUg) N A,
u = Fy o Fj'1 o uj.

The map Fj o Fj_1 is defined on a neighborhood of F;(K; N K}) (non
empty if (U; NUR) NA # ¢).

Given a restricted map u from A into M, with sufficiently small 0
we want to approximate it by a holomorphic map h from A into M.

It amounts to finding R holomorphic maps hi, ..., hg respectively from
UiNnAintoC" (j=1,...,R)

(a) satisfying hy, = Fj, o Fj_1 ohjon (U; NUL)NA,
(b) and such that h; — u; is small, as desired.

We first drop requirement (a).

If uj : UjN A — C™ is such that [Qu;| < 6, there exists w : UjNA —
C" such that u; +w? is holomorphic and Iw;’I < K¢ (for some appropriate
constant K). But we do not have

ugp + wy = Fjo F].“1 o (uj + wy).
We only have

|(ug + wy) — Fg 0 Fj_l(uj +uwi) <1+ A?)K§ = K.

We wish to perturb slightly the holomorphic maps u; + wf in order to
get holomorphic maps u; + wy? + v; defined on U; N A such that on

(U; NUR) N A (ug + w +v9) = Fr o F ' o (uj + wl + vj).

Changing notations, replacing u; + w; by u; it is clear that Proposi-
tion 1 follows from the following Proposition 1’ which is entirely about
maps in C" (the manifold M not longer appears).

We shall start the next section by saying which notations we keep
and by introducing some other notations in order to make it possible to
read Proposition 1’ independently of what precedes.
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5. Proposition 1’ (nonlinear Cousin problem)

As before Uy, ..., Ug are open sets in C that cover A and with empty
triple intersections.

For 1 < j < k £ R we shall introduce subsets of C* w;.k and wjg
which correspond respectively in the previous setting to F;(£2; N Q)
and to the image under Fj of the intersection of given neighborhoods of
K; and K. Sofor 1 < j <k < R, let w;; and w;-k be open sets in C™
with wjix C Wi

Let Fjy (corresponding to Fj o Fj_1 earlier) be a holomorphic im-
mersion from o, ik into C". Note that we define Fj; and wj;; only for
j<k.

PROPOSITION 1’. With the above notations: For every ¢ > 0 there
exists § > 0 such that if for every j € {1, ..., R}, u; is a holomorphic map
from U;NA into C" such that for 1 < j < k < R, uj u;{[(U;NUx)NA] C
wjk and jug — Fjouj| < 6, then there exist holomorphic maps vy, ..., VR
respectively from U; into C™ such that

lvj] < e
ug + vp = Fjr(uj + vy) on (U;NU)NA.
Moreover if py € Uy N A, we can impose vy(p) = 0.

For Fj; being the identity map this would be the standard additive
Cousin Problem.

6. Proof of Proposition 1/

In order to solve uy + vy = Fji(u; + v;), one uses linearization. For
ze(U;NUg)NAand t € C"

Fik(uj(2) +1) = Fir(us(2)) + [Fjyu; ()]t + O(t).
The linearized problem consists in solving, for j < k:

(*) [Fji (g (2)]vj (2) — ve(2) = ~Fji(u;(2)) + ux(2),
where the v;’s have to be found, and the right hand side is given. Nat-
urally F k(u](z)) denotes the derivative (linear tangent map) of Fjj at
the pomt u;(2).

The Cartan Lemma with bounds allows us to write £ (u;(2)) =

9 *(2)g;(2) (j < k), where each g; is a holomorphic matrix defined on
U; whose norm and whose norm of the inverse are bounded by a constant
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depending only on the Uj’s, and on the supremum of the norms of the
F;k’s and of their inverses on wj;. So, and this is crucial, this constant
does not depend on the u;’s (as long as u;[(U; N Uy) N A] C wjg). (*)
can then be rewritten:
() g5(2)v5(2) = gr(2)ve(2) = gr(2) [~ Fj(uj(2)) + up(2)]-
By the standard additive Cousin problem (with bound, adapting The-
orem 1.4.5 in [6] in a very simple setting) there exists a continuous
linear operator T' which to each family o = (ajg)1<j<k<r of n-tuples of
bounded holomorphic functions oy, € [H*((U;NU,)NA)|™ associates a
collection T'(a) = T1(a), ..., Tr(a) of n-tuples of bounded holomorphic
functions Tj(a) € [H*(U; N A)]™ such that, if j < k, on (U; N Ug) N A:
ajx = Tj(a) — Ti(c). For a as above let 3 = (B,k),<x be defined by
Bjk = groji and set

Sjla) = g; ' T;(8).
Then, for j < k, g;S;j(a) — giSk(a) = grayy, therefore

(% % %) [Fji(uj(2)] Sj(e) — Sk(a) = ajk.
For ui,...,ug given let ® be the map from H = @(H‘”[(UﬁﬁU@ﬂA])n
i<k

into itself defined by
(@(a))jk = sk = [Fie(u; + Sj(a)) = ug — Se(a)].
We claim that given € > 0, if all the |Fjy(u;) —ui| are small enough (less
than some ¢) ® has a fixed point a with |S(«)| < €. The corresponding
family
(Ul, ce ,UR) = (Sl(a), ceay SR(CV))

solves therefore Fji(u; + v;) = ug + vg, with bounds as desired.

To end the proof, we have to prove the claim and it is done by a
standard fixed point argument (for contractions). On each (H*[(U; N
Ux) NA])" (j < k) we consider the norm

1k = maxsup | fnl,  f = (F1,. fo).

On H = @(Hoo[(Uj N Ukx) N A])", we can consider the norm defined
j<k
by: if & = (o i), ||a|| = max |ja;kll;x. The closed ball of radius p in H
will be denoted by B,.
(* % %) says that ®'(0) = 0.
On a small ball around 0 of radius independent of the u;’s (as long as
u;[(U; NUk) N A] C wik), the C? norm of @ is bounded independently of
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the u;’s (no differentiation of the u;’s is involved). So if p > 0 is small
enough, not depending on the u;’s |®(a) — ®(6)|| < ”i;ﬂl for every a
and 8 € B,. Choose furthermore p < ”—g,” (IIS|| the operator norm of
S), we have |S(a)| < € for every a € B,,.

Having thus chosen p (not depending on 1, ..., u,) we finally restrict
the choice of the u;’s in order to have ®(B,) C B,. Since ®(0) =
(—Fjku; + ug)jx and || @(a) — (0)]| < @ < £, it is enough to require
that for j < k

s = el < 5.
This concludes the proof of Proposition 1’.

7. Application to the Poletsky theory of discs

By disc (resp. holomorphic disc) in a complex manifold M, we mean
a smooth (resp. holomorphic) map from a neighborhood of the closed
unit disc A in C, into M. Abusively, for such a disc ¢, we will write
0:A— M.

THEOREM. Let f be an upper semi-continuous function on a complex
manifold M. For p e M let

- 27 ) d0
= Inf 0\
f(p)=1In A fowle®)s,

with the infimum taken over the family of all holomorphic discs ¢ with
(0) = p-. ~
Then the function f is plurisubharmonic.

This theorem, proved in (8], is a generalization of the ground-breaking
work of Poletsky [7] (the case M = Cm), and of previous work of
Larusson and Sigurdsson [3]. See also [4] and [5].

We wish to give a new proof of the theorem. Although the proof still
uses a fair amount of complex analysis (especially the existence of Stein
neighborhoods for embedded discs), it avoids the ingredient which was
new in [8], and which was the unpleasant construction of some Stein
neighborhoods of some kind of incomplete Hartogs figure. It is our hope
that part of this new proof may constitute a step towards a generaliza-
tion to the case of almost complex manifolds. Although (assuming an
approximation result such as Proposition 1) it has been sketched in [8],
it seems more convenient to write here a complete proof, with the only
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exception that we will not repeat the proof that the function f is upper
semi-continuous ([3], or [8] Lemma 1).

By using approximation from above by continuous functions, it is
enough to prove the theorem for (real valued) functions f that are con-
tinuous, and bounded from below.

Take p € M and » a holomorphic disc with center at p (¢(0) = p).
We have to show that

Fooy < [ oy

We can restrict our attention to “small” embedded discs, lying en-
tirely in a coordinate patch.

Since the function f is upper semi-continuous, using approximation
from above (as already done in [7] (step 1)), it is enough to show that
for any continuous function v, on R/27Z, satisfying v(8) > Fo (et

. 27 do
< 0)—.
foon < [ o)
By definition of f at the point ¢(e??), and since v > f o ¢, for each
6 € [0,27], there exists a holomorphic disc ¢ : A — M, such that
¥9(0) = p(e?) and
dv

2w
@) > [ FWee)5
0 s

In order to deal only with embedded discs, we add one dimension. We
denote by II the canonical projection from M x C onto M. We set
f: foll, and let ¢ and 129 be the maps from a neighborhood of A into
M x C, defined by:

¢(¢) = (¢(¢), 0),

vo(2) = (Y(2), 2).

Note that $(e?) = "(Zg(()). Since ¥y is an embedding, there is a neigh-
borhood €y of 7;/;9(—5) in M x C, and a biholomorphism xg from that
neighborhood onto a bounded open set x(f) C C*! (n = dim M).
See [9], [3], or [8] Lemma 0.

For # = 0, instead of using the disc ng, we can use the disc {sz,
obtained from QZg by appropriate translation in the coordinates provided
by xg. Precisely, set

T () = x3" (xo 0 90(2) + x0 0 F(e™) = x0 0 B(e)).
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For & =2 0 one still has
2T dv

70 ¢ ivyy OY
v)> [ )5
For fixed 6, (¢',2) — Jg,(z) is holomorphic in z {|z| < a, with |a] > 1)
and smooth in ¢’ (¢’ =2 9).
Fix 7 > 0. By compactness one can find disjoint intervals J; C R/27Z
(4 =1,...,k), and 0; € J; such that:

0 40
[ ol eeEsn <
[0,27]-UJ; u

@(Jj) C Q;, and for every ¢ € J;, @gf(ﬁ) C Qy,, and

27
/ 385 v dv
o) > [ Fi g
For d > 0 we set
Uj = {z € C; dist(z, J;) < 2d},

Uy = {z € C;dist(z,UJ;) > d}.

We take d small enough in 'order that the sets Ug are disjoint (5 =
1,...,k), and such that ¢(U3 N A) C Qg, (a coordinate patch).

Every smooth function, or C**! valued map, that is defined on some
arc of the unit circle can be extended to a function with small support
containing this arc, and whose & vanishes to infinite order along the unit
circle. It can be done with holomorphic dependence on a parameter, and
with bounds.

We apply it to the arcs J; and the functions

(=€’ X9j¢zj(z),

where z is treated as a holomorphic parameter. Then, we pull back
by ngl. Although here the notations are rather unpleasant, the goal
reached is clear. Taking advantage of the fact that locally (in ) one
works in coordinate charts. The families of holomorphic discs given on
the J;’s (identified with arcs on the unit circle), can be extended to a
family of holomorphic discs z — ®((, z) parameterized by ¢ varying in
a neighborhood of A, with the following properties:

(i) The holomorphic discs z — ®((, z) say in a fixed compact set in

M xC,
(ii) (¢, 0) = v(¢),
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(iii) off an arbitrarily small neighborhood of the J;’s, in particular
for ¢ € Uy, the discs are simply constant discs ®(C, z) = $(¢),

(iv) for 0 € J;, B(e, 2) = gt (2),

(v) %?—O for [(] =1,

(vi) <I>(U] X Z) C Qp;,
(vii) Jy" v(8)§F = [ [ Fo (e, ™)L —

The followmg step is a key trick due to Poletsky (similar arguments
were used by J. Globevnik and B. Stensones). Note that for every N € N,

~ 9 d9 dv df dv
0 e i _i(v+NO)
/-/foq)(e € 27r27r //fo(I) e )27r27r'

There exists v (depending on N) such that

/fo@(el" iyno)y 49 d9 //f o B(ci?, i dad”
27r27r

This leads us to the consideration of the non holomorphic discs Gy
in M x C defined by

N (Q) = @(¢, e7¢M).

Note that 07y tends to 0 as N tends to oo, due to the holomorphy
in z, and to conditions (ii) (and the holomorphicity of @) and (v). (Note
also that dpn blows up!)

All triple intersections of U and of the UJ’s are empty. So Proposition
1 allows us to approximate @y by a genuine holomorphic disc hy in
M x C, with hn(0) = $(0) = (¢(0),0).

We assumed that the given function f is continuous. For N large
enough we will have

~ o, db ~ g, do
i Y~ 4 gy :
[ Fomntens] < [Fonte®)gr +r
Since, by the very definition of f
~ . do ~ db
< H 10 P _
fe < [ fomonne) s = [Fonvae,
it follows from the above inequalities that

Foto) < [v@2 +or

Since 7 > 0 is arbitrary, this establishes the Theorem.
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8. Lempert’s example

The answer to the general question raised in 1 is negative.

PROPOSITION 2. Let M be a compact Riemann surface of genus > 2,
endowed with some metric. There exist ¢ > 0 such that for every § > 0
there exists a smooth map p : A — M such that |0p| < §, but such that
for every holomorphic map A : A — M Sup,cadist(p(z), A(z)) > e.

So, uniform approximation of maps with small 9 is not possible.

Proof. Let P be a covering map of M, by the unit disk. Let d
denote the distance function on M, and let dy denote the Poincaré
metric on A. There exists € > 0 such that if f and g are continuous
maps from A into M, and Sup,cad(f(2),9(2)) < ¢, then f and g can

be lifted to continuous maps f and g (f = Po f, g = Po3), with

Sup,cado(f(2),3(2)) <1 (1 playing no special role).
Let B be a function defined on a neighborhood of A in C with the
following properties:

(i) |B(e®)| =1,
(ii) |[Bl]<1 on A,
(iii) B is holomorphic on a neighborhood of the unit circle,

(iv) for every k € N, the restriction of z*B to the unit circle does not
extend holomorphically to the unit disk.

For B one can take, near the unit circle, the square root of a Blaschke
product with 2 simple zeroes, and cut off. Note that (i) and (iv) imply
that for every holomorphic map h : A — A, Sup,cado(h(z), 2¥B(2)) =
+00.

By a normal family argument, there exists ar, 0 < o < 1, such
that for every holomorphic map h : A — A, Sup,cado(h(z),(1 —
a)2*B(z2)) > 1.

Take py : A — M defined by

pr(z) = Po ((1 — ay)2"B(2)).

Then dpy, tend to 0 uniformly on A, as k — oo (due to condition (iii)).
But, for every holomorphic map A : A — M, Sup,cad(pr(2), A(2)) > €.
Otherwise, lift py to the map (1 — ax)z*B(z). By our choice of ¢, we

could lift X to a map A such that Sup,cado((1 — ax)2*B(2), A\(2)) < 1,
in contradiction with the choice of . Proposition 2 is proved.
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