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HYPERBOLICITY AND SUSTAINABILITY OF ORBITS

JOHN ERIK FORNZAESS

ABSTRACT. Let F : C* — CF be a dynamical system and let
{Zn}n>0 denote an orbit of F. We study the relation between {x,}
and pseudoorbits {y.},yo = xo. Here ynt1 = F(yn) + sn. In gen-
eral y, might diverge away from z,. Our main problem is whether
there exists arbitrarily small t,, so that if g1 = F(gn) + $n + tn,
then §, remains close to x,. This leads naturally to the concept of
sustainable orbits, and their existence seems to be closely related
to the concept of hyperbolicity, although they are not in general
equivalent.

1. Introduction

Let F : C* — CF be a dynamical system and let {zn}n>0 denote
an orbit of F. We study the relation between {z,} and pseudoorbits
{yn},yo = zo. Here yp4+1 = F(yn)+ spn. In general y, might diverge away
from x,. Our main problem is whether there exists arbitrarily small £,
so that if Jn41 = F(Yn) + Sn +tn, then g, remains close to x,. This leads
naturally to the concept of sustainable orbits, and their existence seems
to be closely related to the concept of hyperbolicity, although they are
not in general equivalent. The concept of sustainability is introduced in
the next section, and may be viewed as the tangent space analogue of
this situation. Thus we are considering the infinitesimal version of such
perturbations. We say that an orbit is sustainable if errors of size § can
be corrected by (smaller) corrections of size e.

Our main results are
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THEOREM 1.1. (See Theorem 3.1) Let F : P! — P! be a rational
function of degree at least 2. Then F is hyperbolic if and only if F is
sustainable.

THEOREM 1.2. (See Theorem 4.1) Let F' be a generalized Hénon map.
Then F' is hyperbolic if and only if F' is sustainable.

In the next section we define the concept of sustainability. Then in
Section 3 we prove Theorem 1.1 and in Section 4, we prove Theorem
1.2.

2. Sustainability

The concept of sustainable orbits was introduced in ([3]). We recall
the definition. Let M be a Hermitian complex manifold, and let F :
M — M be a holomorphic map. Let us fix an orbit {z,},>0. We say
that (s,) is a sequence of vectors over {zp} if s, € Ty, (M) for each n.
If (s,) and (¢,) are sequences of vectors over the orbit {z,}, we define
a new sequence of vectors (£,) by setting £y = 0 and

&n—i—l = F/(-'Bn)gn + Spt1 + tnsa-

Loosely speaking, the orbit {z,} is sustainable if for every bounded
sequence (sp) there is an arbitrarily small “correction” (t,) = T'(sp)
such that the resulting sequence (&,) is bounded. More precisely, we
say that the orbit {z,} is weakly sustainable if there is a 6 > 0 such
that for any 0 < ¢ < § there is an integer N = N(xzg,¢,d) such that
for every sequence of vectors (sp) over {zp} with s; =0for 1 < j < N
and |sp| < & for all n, there exists a sequence (t,) over {z,} such that
|tn| < €, and the resulting sequence (&) satisfies |[£,] < 1.
We also need the following condition.

(@) t=T(s),t' =T(s)and s, = sh,n < N+m=t,=t,,n<m.

DEFINITION 2.1. We say that the orbit {x,} is sustainable if there is
a d > 0 so that for every 0 < € < § there is an integer N = N(xzg,¢€,0)
and a corresponding map T satisfying (@) such that |£,| < 1 for all
n > 0.

If the constants 8, ¢, N can be chosen independently of the point zy
K, we say that the map F is uniformly weakly sustainable respectively
uniformly sustainable on K. If K = M we say that F is uniformly
(weakly) sustainable.
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3. Rational maps on P!

Let F : P! — P! be a rational function of degree at least 2. See ([2])
for facts from the theory of complex dynamics in one variable. Our first
main result is the following:

THEOREM 3.1. Let F : P! — P! be a rational function of degree at
least 2.

(i) If F is hyperbolic, then F' is uniformly sustainable.

(ii) If every orbit in the Julia set is weakly sustainable, then F is
hyperbolic.

We recall that the Fatou set of a rational map F is the largest open
set in the Riemann sphere on which the sequence of iterates F" is a
normal family. The Julia set is the complement of the Fatou set. The
map F is said to be hyperbolic if there exist constants ¢ > 0,A > 1 so
that |(F™)'(z)] > cA™ for all m > 1 and for all z € J.

Part (ii) of the Theorem can be proved by the machinery developed
in ([3]) if we replace the condition “weakly sustainable” by the stronger
condition “sustainable”. Here we present a simple direct proof. The
more abstract approach given in the next section gives yet another proof
of the weaker version of (ii).

Proof. We first prove (i). Assume that F' is hyperbolic. Let J be the
Julia set of F. Then J # P! and the Fatou set, P!\ J consists of finitely
many attracting basins. We can choose coordinates so that oo is an
attracting periodic point. Then there exists a neighborhood U = U(J)
and constants C' > 1,A > 1 > p > 0 so that if F™(z) € U, then

n

s A
() (™Y ()] > 5

and if z is not in U, |(F")'(z)] < Cu"™. We can assume we use the
Euclidean metric on U. This only amounts to a finite scaling in the
constants. The basic idea is to define t,, to cancel s,y where the map
is expanding and to set t, = 0 where the map is contracting. This is
worked out in the next Lemma.

LEMMA 3.2. Let N > 1. Let {z,}n>0 be any orbit and let {s,}n>1 be
any sequence of tangent vectors, s; = --- = sy = 0, |s| = max |s,| < co.
Then there is a sequence t = t(s) = {tn}n>1, tn depends only on s,yn,
such that

(a) [t < S,
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(b) leal < 18] [ +155]

Proof of the lemma. Suppose at first that z, € U for all n > 0. Then
we define the sequence {t,} by

Sp+N
Flzpan-1) - F'(zp)

Hence (a) follows from (*).

ty = —

We get:

Z 3N+J
F/ ZN+] 1 F/(Zk)

By direct calculation we get for k > N :
k

_ SN+j
&k = — Z 7 . -]~-F’(Zk)'

j=max{1,k+1-N} F (ZN_H_l)

Hence we get the estimate

Y oc
&kl < !SIZ;J
=1
Cls|
< 220
- a-1

Hence (b) holds in this case.

Next, we assume that z, € U,n < m, but 2z, is not in U. In this
case the orbit (z,) converges to one of finitely many attracting periodic
orbits. In this case we define
tn - _ Sn+N

Flonin) - Flensn)’
t, = 0,if n+N>m.

fn+N<m

The calculations are similar and we omit them.
The Lemma follows. O

To finish the proof of part (i) of the Theorem, it suffices to choose

6 < 1 so small that

C C
Sl— v 2
[/\ 171 u]<1
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and choose N so large that

Co

Xﬁ<6.

These constants are independent of the orbit. Hence part (i) follows.

Next we prove part (ii) of the Theorem.

Assume that every orbit in the Julia set is weakly sustainable. Let ¢
be a critical point. Suppose first that {F™(c)} clusters on J.

Case 1: The critical point ¢ is in the Fatou set.

Since there is no wandering Fatou components ([2]), the iterates F"(c)
belongs to a periodic Fatou set QU --- U F¥(Q), F¥(Q) = Q for all large
n. Since {F™(c)} clusters at the Julia set, this Fatou component must
be a periodic parabolic basin ([2]). Hence there is a periodic point p for
which F*(p) = p for some k and |(F*)'(p)| = 1. We can assume that
the orbit of p is bounded away from oo and that the metric is Euclidean
there.

Set p = 2o, zn = F™(20),bn = F'(zn),100 - - €n-1] = 1. Let

T = sup '303]‘21
3=0,...n—1

Let 4 be as in the definition of weakly sustainable for zy. Let € := %
and suppose N is an integer as in the definition.
We calculate &,.

50 = 0,
& = Lo+,

§n = Lbno1 i+ lnore b+ by 1Tp + Th.
We can write &, = £} + €2 where

& = by l1s1+ b1 Lasg + Ly 1501 + Sn,
2 = lyq-bity + g1 Loty + lnoatyq + it

Since |t| < €, we get the following estimate on £2 :

né
€2] < nTe < o
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We will select s, in the following way:

s1 = "':SN:Ov
SN+1 = 67
|sn] = 6,—i—eR+,nzN+2.
en"'[N+2

Next we estimate f}\, +nk> keeping only terms when the product of the
derivatives is of modulus 1:

1€N+nkl = |ENtnk-1- €151 + ENgnk_1 - - - 282
+  + INynk-15N+nk—1 + SN+nkl
= |Ongnk—1--4151) + - - + |SN4nk|
> nd.

This gives us an estimate on &y 4,

'§N+nk| 2 lE]lV+nk' - |§A72V+nk| >nd — T > 7 — —2—];

which shows that the sequence &, fails to be bounded, a contradiction.
So case (i) is impossible.

Case 2: The critical point ¢ belongs to the Julia set.

Let zgp = ¢, {2z} denote the orbit of the critical point ¢. Then z, is
not a critical point for any large enough n. We first make some estimates
for the orbit of the critical point. Afterwards we will use the fact that
almost all orbits in the Julia set are dense in the Julia set ([2]) and
hence will follow the critical orbit arbitrarily well. We will define at first
a sequence 3y, |8,| = 1 to maximize the disturbance along the critical
orbit by the following implicit equations:

EO = 0

$1 = 1

51 = F,(ZO)EO +s5 =1
£n+1 = F/(zn)én + Sn+1

| (z0) €l + 1.

I

I£n+ll

Hence,
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LEMMA 3.3.

fnrr = Fl(z) - F(21)81+ + F'(2n)8n + 3nt1,
|F'(zn)||F'(zn-1)| - - [F'(21)]
+ F ()| F' (zn-1)| - [F' (z2)| 4 - + [F'(za)| + 1.

We divide into two cases:

|€~n+1|

Case A: The sequence {|¢,|} is unbounded.

Let {wy}n>0 be an orbit in the Julia set which is dense in the Julia
set and does not contain any critical point. Let 0 < § < 1 be as in the
definition of weakly sustainable orbit, set € = /2 and let N > 1 be as
in the definition of weakly sustainable orbit for wy.

Fix an integer m > 1 so that |€,41| > 4/6.

Let {wy,} — c. Fix j large enough that £; > N. We define a sequence
s, as follows:

n<€j: s =0,
G <n<tli+m: Sn = 08n_¢;,
n>4+m: 8p =0.

Since {wn} is weakly sustainable, there is a sequence {tn}rn>1, [tn| <
€ = 6/2 so that |&,| < 1 for all n where & = 0,&,41 = F(wn)&n+ Sny1+
tnt1. In particular, || < 1.

€o;4m+1
= [F'(wp;m) - F'(wy)] &,
+ [F'(we,4m) - - F'(we,41)81 + -+ + F'(We,4m)8m + Smr1] 6
+ [F'(wey4m) -+ F'(wey1)te,41 + - -
+ F'(we; 4m)te;4m—1 + to; +m+1]-
If we let j — oo, the first term converges to 0 because F'(wg;) —

F'(c) = 0. The second term converges to €m+10 and the third term is
bounded by (|§m+1|~+ O(Jwe, —cl))e < (|€m+1] + O(Jwe, — cf))d/2. Since
[€e,4m+11 £ 1 and |£,41]0/2 > 2 we get a contradiction for large j.

We have shown that no critical orbit can cluster on the Julia set.
Hence ([2]) the map F is hyperbolic.

Case B: The sequence {|£,|} is bounded.
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LEMMA 3.4. For any n > N there exists ann > m(n) > n— N so
that IF/(ZH)I U IF/(Zm(nH—I)I < 1/2'
Proof. Obvious. O

We use the previous Lemma repeatedly to obtain:

LEMMA 3.5. For any n = ny > N, there exist ng,...,n, with
nj+1 = m(n;) and n, < N so that |[F'(z,)| - -+ |F'(2n;,,41)| < 1/2.

LEMMA 3.6. There is a 7 > 0 so that if n < N, z € J and if
0 <o <7, then F*"(A(z,0)) C A(F™(2),|(F™)(2)|o + o/4).

Proof. Let L denote the maximum of the double derivates of any
function F™,1 < n < N at all points of distance at most 1 from the
Julia set. We then getifo < 1,z€ Jand lw—z|<o,1<n<N:

[F"(w) = F*(z)] < max |(F")(z)lo

2€A(z,0)
< [[(F")’(z)| + LO’] g.
Next just choose 7 so small that L7 < 1/4. 0

We can then prove that the critical point is in the Fatou set, a con-
tradiction since we assumed that c is in the Julia set:

LEMMA 3.7. The critical point ¢ is in the Fatou set.

Proof. It follows from the previous Lemma that if A(e, o) is a small
enough disc, the images F"/(A(c, 0)) are contained in discs A(F™ (c), 0;)
where the o; — 0 geometrically. It follows that the disc A(c, o) is con-
tained in the Fatou set. O

4. Higher dimension

In this section we prove Theorem 1.2. We refer the reader to ([4])
for basic terminology for Hénon maps. Recall briefly that K* is the
set of points with forward bounded orbits, K~ is the set of points with
backward bounded orbits, J* = 0K* and J = Jt N J~. The set J
contains the support J* of the unique measure of maximal entropy.

THEOREM 4.1. Let F be a generalized Hénon map.
(i) If F is hyperbolic, then F is uniformly sustainable.
(ii) If every orbit in J is sustainable, then F is hyperbolic.
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Part (i) of the Theorem is proved in ([4], Theorem 4.10). Furthermore
we know that if F is sustainable on J*, then F is hyperbolic on J* ([3],
Theorem 4.1). Hence we only need to show that J \ J* is empty in
this case. This was done in ([4], Theorem 4.9) under the additional
hypothesis that |J(F)| < 1. Hence our main contribution here is to
remove the hypothesis that the volume is contracting.

First we make some general estimates about maps with sustainable
orbits.

Let {Zn}n>0 be an orbit of a holomorphic map F : M — M. (The
following remarks are also valid for real smooth maps.) Let X, C T, M
be a hyperplane. We assume that F'(X,) C X,4;. For every X, we
let v, be a unit vector perpendicular to X,. For n > m, we write
(F"™ ™Y (V) = amntn + w where w denotes some vector in X,. We
have for n > m > £ that agmamn = as,. We can after rotation also
assume that all the amn, > 0. The set {{zn, Xn}n>0} is closed in the
product topology. We set a, = agn.

THEOREM 4.2. ([3], Theorem 3.17) Suppose that the orbit of y is
relatively compact and sustainable. Then the map F is uniformly sus-
tainable on w(y), the cluster set of the orbit of y.

We let 8, N(e,d) denote uniform constants of sustainability for w(y).
Let z¢ € w(y) and suppose that X is a hyperplane in T,.

PROPOSITION 4.3. There are two possibilities for {(zn, Xn)}n>o0-
(1) Fix m. Then lim;,_,oc Gmn = 00.
(2) Fix m. Then limy o0 Gmn = 0.

The Proposition will be an easy consequence of the next two Lemmas.

LEMMA 4.4. Ifam , < g for some n > m, then a; < min{2a,,, %an} =
%an V£i>n.

Proof of the lemma. Let C = suppe,(y) [|F”(p)]]. Choose €,6 > € >0
so small that Z;:gn_l Cle < %. Let N = N(e,§). Since zy € w(y) we
can extend the orbit backwards to some {zp}n>-n C w(y). We can also
find hyperplanes X,,,—N < n < 0 using backwards induction so that
F'(X,) C Xny1 always. Let v, L X, and extend the definition of @, n
as well.

Next let s_nyy1 = -+ = Sp-1 = 0,8x, = Ovg,k > n, and let
{ti}k>—~N+1, {€k}k>—n be as in the definition of sustainability for the
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orbit {z,}n>-n. Then || < 1 and

&n = (F* ™) (zm)(€0) + Z (F™ ™Y (21 5)(t5) + Svp.
j=1

We write £ = aguy + £}, where |ag| <1 and &, € Xy, k > 0.
€n = (F"7™) (@m)(@mvm) + (F*™™) (2m) (&)

n—m

+ 7 (F ) @i (t5) + v,
J=1
Hence

n—m-—1

n—6+bn,lb|<|am|— Z Cle < 5

We get for k > 1,

Upt+k = an,n+k(6 + bn) + Ont1n+k (5 + bn+1)
+ -t Gnpk—1,01k (0 F bpgr—1) + (6 + bntk),

where by ; are contributions from ¢t when j > 1 and hence |b, ;| < € < ‘5
for j > 1. Hence

[€ntkl > |anyl

é
> an,n-b—kz‘

Since |{p4x| < 1, it follows that ap pik < %. Hence ap 1k = anannik <
2 O
Ean.

LEMMA 4.5. Let 0 < n < K. Then there must exist some n > 0 for
which ap, ¢ [n, K].

Proof of the lemma. Suppose that ay, € [n, K] for all n > 1. Then, if
n>m2>1,

Let 8,¢ = 2—}7(7 N be as in the definition of sustainability. Next, we
define s, = 0,1 < n < N,s, = dup,n > N. Let {t,}n>1 be the e
corrections. We denote by w, any vector in the space X,,. We can write
th = thvn + wp, |t <e.
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Ifn> N,
£ = [(F" V" (ani1)sne + (F"N=2) (2 12)sn 2
+ 4 Sn] + [(Fn—l)/(xl)tl
+ (Fn—2)/(,’1:2)t2 4o+ tn]
= Wy + [ans106 +ang2nb + o+ 8lun
+ [arnty + -+t vn.
Hence
lfnl > [GN+1,n5 + aN+2’n5 4o+ 5] + [al,nta 4+t t,n]
K
n n
> = - _=
> 28 |(n=N) ]
— ooasn — o0.

Proof of the Proposition. There are two cases, by Lemma 4.5.

Case (i) lim a, = .

By Lemma 4.4 it follows that whenever m > n, then an 2> %an.

Hence a, — <.

Case (ii) lim a, = 0.

Choose r > 0,r < %. Pick n so that a,, < r. Then a, < %. Hence by
Lemma 4.4, if m > n, then a, < %an < %. 1t follows that a,, — 0. O

DEFINITION 4.6. We say that {z,, X} is an attractor if a, — 0 and
that {zn, X} is a repellor if a, — oo.

LEMMA 4.7. If {z,, Xn}n>0 is an attractor, g € w(y), then all
{Yn, Yn}n>0, Yo € w(y), close enough, are also attractors.

Proof. By the Proposition a, — 0. Hence by continuity, for all
{tyn, Yn}n>o nearby, the corresponding ap < % for some n. Hence by
Lemma 4.4 these a,, form a bounded sequence, hence by the Proposition
they must converge to 0. O

It follows from ([4], Section 4) that we only need to show that F'is
saddle hyperbolic on any w(y),y € J. If so, the proof of Theorem 4.1
can be completed following the steps from ([4]).
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Proof of Theorem 4.1. Since Henon maps have no critical points,
{@n, Xn}n>0 is uniquely determined by (xg, Xg). Let y € J and set
L = w(y). We divide L into three pieces:

L** = {xp € L; (x, Xo) is an attractor V Xy},
L {zo € L; (20, X0) is a repellor V Xg},
LSU — L \ (LSS U LUU) i

We observe at first that these sets are invariant. Also, the sets L5
and L*¥ U L*" are open in L. Hence, L"* is a closed invariant subset.
But then it follows by a compactness argument that F' is uniformly ex-
panding on L**. This implies that L“* consists of finitely many repelling
periodic orbits, hence L** belongs to the interior of K. This contra-
dicts that J C 8K ~. Hence L“* is empty. Next suppose that zq € L*°.
Then by compactness there exists some n so that for any hyperplane Xy
the corresponding a, < 1/2. This implies that the map is contracting.
Therefore, the constant Jacobian of the Hénon map is strictly less than
one. Hence we are back in the case covered in ([4]), so the theorem
follows in that case.

We are left with the situation where L = L*“. Suppose that X is a
repellor for g € L. Then for any small angle ¢, if v is a unit tangent
vector at xg with angle at least { with X, then (F™) is expanding on u
and the expansion is uniform. It follows that if there is another repellor
at zg, then (F™) is expanding in all directions at zq. But this is only
possible for points in L**. Therefore we know that for each point zq in L
there is a unique hyperplane X which is a repellor. Since the condition
of being an attractor is open, it follows that the line field Z = {X;}
varies continuously along L.

We next introduce a notion of Z sustainability. We simply mean
that the map F' is sustainable when we restrict both the vectors s,
and ¢, to belong to the invariant line field Z. This concept was already
introduced in ([3]) and applied to skew products (P(z), Q(z,w)) which
have a natural invariant line field consisting of lines parallel to the w
axis. In fact the proof of ([3], Lemma 5.3) carries over to the line field
Z to show that F is uniformly Z sustainable.

Once we have uniform Z sustainability we can easily prove a version
of Lemmas 4.4 and 4.5 to obtain a version of Proposition 4.3 showing
the following:

LEMMA 4.8. If xg € L and vy, is a unit tangent vector along Z, then
there are two possibilities:
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(1) [I(F™) (20) (vzo )| — 0,
(if) I(E™) (zo)(vao) — 0.

Let L, consist of points zg € L for which case (i) occurs and let
L be the points of case (ii). Then Ls is open in L and L, is closed.
The sets are both invariant. If we restrict to L, we see that (F™) is
uniformly expanding on L,. But this is impossible for the same reason
that applied to show that L** is empty. Hence we see that L = L. But
this shows that Z is a stable field for F. Now it is straightforward to use
the fact that Z is a line field of repellors to show that there also exists a
continuous invariant unstable field on L. Hence we have shown that F' is
saddle hyperbolic on L. The rest of the proof is the same as in ([4]). O

Next we make some remarks on holomorphic endomorphisms on P".

Suppose F : P* — P" is a holomorphic map of degree d > 2. Let
J denote the support of the unique invariant measure p of maximal
entropy. Then J is completely invariant.

Assume that F' is sustainable. Recall ([1]) that

J ={p € J,pis a repelling periodic point}.

By ([3], Theorem 3.17]) F is uniformly sustainable on J. Let 6, N (e, §)
be uniform constants.

THEOREM 4.9. If F : P¥ — P* is a holomorphic map of degree d > 2
and all orbits in J are sustainable, then F is uniformly expanding on J.

Proof. For every repelling periodic point pg in J and any hypersurface
Xpo C Ty, let [po, Xp,] denote the sequence {pn, (F™) (po)(Xp,)}. Let [po]
denote the union [po] = U{[po, Xp,]}. Next we set S = U[pg] where we
take the union over all repelling periodic points contained in J. Next we
let 7' = S denote the closure.

Using Proposition 4.3 we divide T into two complementary subsets,
T, and T, where T, are those elements zy € J for which all {z,, X}
are repellors. Then T is open in T. However none of the [pg] obtained
as above from repelling periodic orbits are contained in 7. Since those
are dense in T it follows that in fact Ty is empty. But then it follows
that (F™) is uniformly expanding on J. O
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