JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 5, NO. 1, MARCH 2003

73

On Scheduling Real-Time Traffic under Controlled Load
Service in an Integrated Services Internet

Hongyuan Shi and Harish Sethu

Abstract: The controlled load service defined within the IETF’s In-
tegrated Services architecture for quality-of-service (QoS) in the
Internet requires source nodes to regulate their traffic while the
network, in combination with an admission control strategy, pro-
vides a gnarantee of performance equivalent to that achieved in a
lightly loaded network. Packets sent in violation of the traffic con-
tract are marked so that the network may assign them a lower pri-
ority in the use of bandwidth and buffer resources. In this paper,
we define the requirements of a scheduler serving packets belong-
ing to the controlled load service and present a novel scheduler that
exactly achieves these requirements. In this set of requirements,
besides efficiency and throughput, we include an additional imper-
tant requirement to bound the additional delay of unmarked pack-
ets caused due to the transmission of marked packets while drop-
ping as few marked packets as possible. Without such a bound,
unmarked packets that are in compliance with the traffic contract
are not likely to experience delays consistent with that in a lightly
loaded network. For any given desired bound o on this additional
delay, we present the CL(«) scheduler which achieves the bound
while also achieving a per-packet work complexity of O(1) with
respect to the number of flows. We provide an analytical proof
of these properties of the CL(«) scheduler, and we also verify this
with simulation using real traces of video traffic. The scheduler
presented here may be readily adapted for use in scheduling flows
with multi-level priorities such as in some real-time video streams,
as well as in other emerging service models of the Internet that
mark packets to identify drop precedences.

Index Terms: Controlled load service, scheduling, real-time traffic,
Integrated Services architecture.

I. INTRODUCTION

With the rapid evolution of the Internet as a commercial in-
frastructure, there has been an increasing demand for differen-
tiated services based on user and/or application requirements.
Real-time traffic, in particular, has stringent delay and band-
width requirements which are not guaranteed by the best-effort
service provided by much of today’s Internet. The guaranteed
service model in the [ntegrated Services architecture defined by
the IETF seeks to achieve this by making per-flow reservations
using the Resource Reservation Protocol (RSVP), and then ex-
pecting schedulers in the routers to abide by the reservations [1].
One of the challenges in providing these guaranteed services is

Manuscript received February 26, 2002; approved for publication by Weiguo
Wang, Division [l Editor, October 27, 2002.

The authors are with Department of Electrical and Computer Engineering,
Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104-2875, USA,
e-mail: {shi, sethu} @ece.drexel.edu.

This work was supported in part by U.S. Air Force Contract F30602-00-2-
0501.

in the management of reservations and scheduling states corre-
sponding to thousands of traffic flows that may all be active at
the same time. Therefore, the Integrated Services framework
also specifies a more scalable option called the controlled load
service [2]. This paper is concerned with designing a scheduler
for routers which serve packets belonging to this service cate-
gory. The algorithm presented here may also be used in other
contexts where one has to schedule flows consisting of pack-
ets at different priority levels, such as in some real-time video
streams [3] as well as in other emerging service models of the
Internet that mark packets to identify drop precedences [4].

Controlled load service is distinguished by the fact that it
seeks to provide users with a quality of service similar to that
in a lightly loaded or unloaded network, and without requiring
or specifying a target upper bound on the delay or loss probabil-
ities. The idea behind this service model is that many real-time
applications do receive adequate performance and quality of ser-
vice in a lightly loaded network, eliminating the need for very
strict performance guarantees. The desired quality of service is
intended to be assured through capacity planning and admission
control rather than through per-flow management during packet
scheduling and forwarding. When a user exceeds traffic speci-
fications approved by the admission control policy, the service
obtained by the excess packets degenerates to the best-effort ser-
vice.

Controlled load service allows a scalable means to achieve
the required quality of service since it does not require the net-
work to distinguish between flows beyond the admission control
stage at the edges of the network. Each user/application pro-
vides an estimate of its traffic specifications, Tspec, and the ser-
vice provider admits the traffic based on one of several possible
admission control strategies that determine whether or not sup-
porting the new user will still keep the network “lightly loaded”
{5]. Packets sent by an application in excess of the Tspec agreed
upon by the user and the service provider are marked by a traf-
fic policer at the entry point into the network. As required by
the definition of the controlled load service, the unmarked pack-
ets receive service similar to that in a lightly loaded network
but the marked packets receive only a best-effort service. To
preserve the generality of our solutions, we refer to these ex-
cess packets as simply marked packets and the rest as unmarked
packets. Such marking of packets to indicate their level of im-
portance for dropping policies within the network is also used
in the Differentiated Services model defined by the IETF [4]
and in related buffer management and congestion control strate-
gies as in the RED with In/Out (RIO) [6]. In addition, certain
applications such as the multicasting of video streams employ
schemes where the signal is encoded in layers so that progres-

1229-2370/03/$10.00 (© 2003 KICS

74

sively higher quality in the received stream can be achieved by
receiving packets from more layers [7], [3]. Packets from layers
corresponding to higher quality may be selectively dropped by
the routers at congested points in the network.

Several admission control [5], packet forwarding and
scheduling strategies [8], [9] have been suggested for use in
routers to support the controlled load service. The authors in
[9] propose a strategy that dynamically alters the priority of the
packets (for e.g., marked or unmarked) to appropriately achieve
the expected arrival time of each packet. The complexity of
the algorithm is of O(nlogn) with respect to n, the number
of flows. However, the controlled load service was designed as
a scalable alternative to providing guaranteed service for appli-
cations that do have certain quality of service requirements but
which can, to some extent, adapt to changes in network condi-
tions. One of the goals in the design of our scheduler for con-
trolled load service is that it should be efficient with no per-flow
management of flows, and with an O(1) dequeuing complexity
with respect to the number of flows and also the number of pack-
ets awaiting service. We consider it important to preserve this
original intent in the implementation of mechanisms that sup-
port the controlled load service. To this end, as intended by the
designers of this class of service and as also suggested in [8],
we believe that a First-Come-First-Serve scheduling strategy is
adequate for controlled load service, in combination with an ef-
fective admission control policy and a simple threshold-based
buffer management strategy.

In addition to the simplicity and the scalability desired in
the mechanism that supports the controlled load service, it is
also desirable that we provide some guidelines on how to treat
marked packets in relation to unmarked packets. For exam-
ple, if capacity planning and admission control are reliably and
correctly executed, the scheduler will have enough bandwidth
for the unmarked packets. However, it is desirable that as
many marked packets be transmitted as possible while the delay
caused to unmarked packets because of marked packet transmis-
sions is bounded. Even though scheduling algorithms have been
studied extensively for best effort traffic as well as for guaran-
teed services, scheduling strategies for merged packet streams
with marked and unmarked packets requiring different levels of
service have not been studied within a theoretical framework.
Scheduling of packets seeking the controlled load service pro-
vides such a context with packets of the same flow belonging
to different priority levels. In the design of the scheduler for
controlled load service, our goal is to provide a framework and
a mechanism that recognizes the trade-offs in the conflicting
requirements of sending as many marked packets as possible,
while ensuring that the unmarked packets of the same or other
traffic streams continue to experience delays consistent with that
in a lightly loaded network.

This paper presents a scheduler of O(1) per-packet com-
plexity with respect to the number of flows and the number of
packets awaiting service, and which ensures that the impact of
marked packets on the delay experienced by an unmarked packet
is bounded. In addition, it transmits very close to the maxi-
mum possible number of marked packets that may be transmit-
ted while meeting the above goals. The paper is organized as
follows: In Section II of this paper, we elaborate on the above

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 5, NO. 1, MARCH 2003

and related requirements of a scheduler in an Internet router pro-
viding controlled load service to traffic from real-time sources
with marked and unmarked packets. This section also formally
outlines these requirements upon which we base our scheduling
strategy. Section III presents the CL(ax) scheduler designed to
satisfy these requirements. Section IV analytically proves that
the algorithm meets the requirements specified in Section IL.
Section V presents a brief set of simulation results using real
video traffic traces that verify the analysis in Section IV and
also show that the CL(«) scheduler sends close to the maximum
possible number of marked packets under the stipulated restric-
tions. Section VI concludes the paper.

I1. REQUIREMENTS OF THE SCHEDULER

Our primary goal in the design of a scheduler for controlled
load service is to preserve the original intent in the design and
specification of the controlled load service. Certainly, it would
be inappropriate to add implementation complexity to the ser-
vice by adding per-flow management in the routers. Therefore, it
is desirable that the scheduler use some simple discipline such as
first-come-first-served (FCFS), while aggregating packets from
all flows awaiting service by the scheduler into the same queue.
Note that, in a lightly loaded network with regulated traffic, the
FCFS scheduling discipline is expected to be more than ade-
quate. This facilitates the design of an efficient scheduler with
a per-packet dequeuing complexity that is independent of the
number of flows and also the number of marked or unmarked
packets awaiting service in the queue. Also, by such a strat-
egy which places all the packets in the same queue, the packets
within the same flow, marked or unmarked, are delivered in or-
der.

Secondly, the controiled load service packets do not have a
delay or bandwidth specification. Therefore, a scheduler cannot
make decisions based on delay requirements as in traditional
guaranteed-service schedulers such as virtual clock or weighted
fair queueing [10]. Instead, it is the capacity planning phase and
admission control mechanism, based on the Tspec provided by
the applications, that are responsible for ensuring that the pack-
ets can receive a delay approximating that in a lightly loaded
network. Therefore, given effective capacity planning and ad-
mission control, it is sensible for the scheduler to assume that
the unmarked packets of one flow will not affect the unmarked
packets of another flow to the point that the network appears
congested to any flow. However, the marked packet arrival char-
acteristics are not part of the Tspec and therefore, unregulated.
The scheduler does have to ensure that the impact of too many
marked packets on the quality-of-service received by the traffic
flows is kept under control within a certain acceptable bound.
Since delay is the primary QoS parameter for real-time traf-
fic, we can define the scheduler requirement as follows: the
scheduler should guarantee that, for any unmarked packet, the
additional delay caused by marked packet transmissions is no
more than a certain constant, «. In other words, if an unmarked
packet, in the absence of marked packets, could be forwarded
with a delay of A, then the delay of the same packet in the pres-
ence of marked packets should be no more than A + o. The
quantity a: may be defined by the router or may be a negotiated

SHI AND SETHU: ON SCHEDULING REAL-TIME TRAFFIC UNDER CONTROLLED...

quantity between service providers.

Finally, we do wish to send as many marked packets (un-
regulated, best-effort packets) as possible without violating the
above requirement on the impact of marked packets on the de-
lays experienced by unmarked packets, and also without vio-
lating the requirements on the efficiency and complexity of the
scheduler. This set of requirements is non-trivial to meet, es-
pecially in the absence of per-flow management. Note that in
the absence of per-flow tracking and management of packet ar-
rivals, the scheduler cannot predict with sufficient precision the
new packet arrival characteristics, and therefore, cannot know
whether sending a marked packet at a certain instant of time can
be a cause for additional delay for unmarked packets at some
later time.

In summary, the following are the goals in the design of our
scheduler for controlled load service:

1. The scheduler should be efficient with no per-flow man-
agement of flows, and with an O(1) dequeuning complex-
ity with respect to the number of flows and with respect to
the number of packets awaiting service.

2. The scheduler should be able to ensure that the impact of
marked packets on the delay experienced by an unmarked
packet is bounded.

3. Given the above two goals, the scheduler should be able
to transmit as many marked packets as possible. For ex-
ample, the scheduler should not trivially achieve the above
goals by dropping all marked packets.

We assume that, within any given router, the quantity « is
the same for all flows in the network. This critical parameter
cannot be used in a cumulative fashion across multiple routers in
the path of a flow since this would imply that schedulers would
have to manage per-flow states. We assume that the capacity
planning and the admission control phases will determine and
set this parameter for each of the routers in the network prior to
the beginning of transmissions that require such service.

III. THE CL(a) SCHEDULER

The CL(«) scheduler for Controlled Load service presented
in this section meets the requirements specified in the previous
section. For any given «, the CL(«) scheduler ensures that the
increase in the delay experienced by an unmarked packet due to
the presence of marked packets is bounded by a.

The CL(«) scheduler maintains a single FCFS queue for all
arriving packets. Marked as well as unmarked packets are all
added to the tail of the same queue in the order of their arrival
times. The CL(«) scheduler removes packets from the head of
the queue for transmission, dropping marked packets if neces-
sary. In our presentation of the scheduler, we assume that a
marked packet transmission will not be pre-empted for the trans-
mission of an unmarked packet. Consequently, we also assume
that a is no smaller than the maximum possible length of time it
may take to transmit a marked packet. Without this assumption,
however, pre-emption will be necessary to ensure that marked
packet transmissions do not increase the delay of an unmarked
packet by more than . While our presentation assumes no pre-
emption for purposes of improved clarity, the CL(«) scheduler

75

can be trivially changed to allow pre-emption if so desired.

In this paper, we use the following definitions of the delay of a
packet and the extra delay of an unmarked packet at time instant
t.

Definition 1: The arrival time of a packet is the instant of
time that the last bit of the packet arrives into the queue of pack-
ets awaiting transmission by a scheduler. The departure time of
a packet is the instant of time that the last bit of the packet is
transmitted by the scheduler. The delay of a packet at a sched-
uler is the length of the time interval between the arrival time
and the departure time of the packet.

Definition 2: The extra delay, denoted by EDp(t), experi-
enced at a scheduler by an unmarked packet, P, at time instant
t is the cumulative additional delay that is experienced by P
caused by transmissions of marked packets before time ¢.

In a scheduling policy in which all marked packets are al-
ways dropped, the extra delay of an unmarked packet is always
zero. The extra delay of a packet at a scheduler represents the
difference between the delay experienced by the packet at the
scheduler and the delay it would experience with a reference
scheduler that drops all marked packets.

The extra delay, as defined above, is a function of time and
changes whenever the scheduler chooses to send marked pack-
ets. If a scheduler chooses to drop all marked packets after time
t, the extra delay of unmarked packets in the queue will not in-
crease after time ¢. Obviously, when a marked packet is sched-
uled for transmission, all the unmarked packets in the queue will
suffer an extra delay. In addition, some of the extra delay is
“passed on” further to the unmarked packets which arrive af-
ter the transmission of the marked packet. This is because, in
a first-come-first-served queue, a packet’s delay depends on the
time at which its predecessor is served. Thus, the extra delay
caused to one unmarked packet can cause an extra delay to un-
marked packets that arrive later as well.

The extra delay of a newly arrived packet, however, is not
merely equal to the extra delay suffered by its predecessor until
this time, and can actually be less than that of its predecessor in
the queue. This is best illustrated by considering an unmarked
packet that arrives during a period of low congestion with only
a small number of packets in the queue. However, the unmarked
packet ahead of it in the queue, i.e., the predecessor packet, may
have arrived in the queue during a period of heavy congestion
when the queue length was large and thus may have a large extra
delay associated with it. It is possible that the queue length later
reduces and the newly arrived packet will only inherit a portion
of the delay suffered previously by the predecessor packet. We
will analyze these aspects of the extra delay in greater detail in
Section III-A.

The goal of the CL(«) scheduler is to ensure that EDp (f) < «
for all unmarked packets at all time instants ¢. In achieving this
goal, the system has to (i) keep track of the changes in the ex-
tra delay of each packet in the queue and also (ii) determine the
extra delay inherited by each new arriving packet from its pre-
decessor packet. In the following, we describe an efficient algo-
rithm that manages these two important functions in the CL{«)
scheduler.

76

Initialize: (Invoked when the scheduler is initialized)
HeadED « 0;
TailED — 0,

Enqueue: (Invoked when a packet P arrives)
if (P is unmarked) then
if (EDDQueuelsNotEmpty AND U < TuilED) then
AddToEDDQueue(TailED — Uy,
TailED «— U,
else
AddToEDDQueue(0);
end if;
end if;
AddPacketToQueue(P),

Fig. 1. Intialization and enqueueing routines of the CL(¢c) sched-
uler; U, at any given time instant £, and stands for U (¢).

A. Tracking Changes in EDp(t)

To track the extra delay of packets in the queue as it changes
with time, a naive method is to maintain an extra delay counter
for each unmarked packet in the queue. The scheduler in such
a case would have to check each of the extra delay counters be-
fore sending a marked packet. Upon sending a marked packet,
it would have to update each counter by the transmission time
of the marked packet. Obviously, this scheme has a process-
ing delay proportional to the number of unmarked packets in
the queue, with the potential of severely limiting scheduling ef-
ficiency when the queue length is large. The CL(«v) scheduler,
however, achieves significantly better scalability by inferring the
extra delay of each unmarked packet from that of its predecessor
packets in the queue. In fact, the CL(a) scheduler succeeds in
achieving an O(1) per-packet work complexity. Figs. 1, 2, and
3 present a pseudo-code description of the CL(c) scheduler,

Recall that the FCFS queue consists of both marked and un-
marked packets. We denote the first unmarked packet in the
queue that has not yet completed transmission as the unmarked
head. Note that an unmarked packet that is being transmitted at a
certain instant of time is the unmarked head at that instant. Simi-
larly, we define the unmarked tail as the last unmarked packet in
the queue that has not yet completed transmission. The CL(«)
scheduler maintains a record of the extra delays for the un-
marked head and tail packets, denoted by HeadED and TailED,
respectively. Both of these values have to be updated whenever
a marked packet is transmitted while there are unmarked packets
in the queue.

Suppose the arriving unmarked packets are labeled as 1, 2,
- -, in the order of their arrival times. Let a; be the arrival time
of packet i. Let d; be the departure time of packet ¢. If packet
i arrives before packet ¢ — 1 completes its transmission (i.e.,
a; < d;—1), note that neither of the packets would have com-
pleted transmission during the interval between a; and d;_;.
The additional accumulated extra delay due to marked packet
transmissions during this time interval is the same for both pack-
ets. That is, for a; < t < d;_1, we have,

E.Dl(t) — EDl(az) = EDi_l(t) - EDi_l(ai).

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 5, NO. {, MARCH 2003

Dequeue:
while (QueuelsNotEmpty) do
P «— PacketAtHeadOfQueue;
if (P is unmarked) then
TransmitUnmarkedPacket(P);
/* P is marked. */
if (EDDQueuelsNotEmpty) then
if (HeadED + TxTime(P) < «) then
HeadED «— HeadED + TxTime (P);
TailED « TailED + TxTime(P);
TransmitPacket(P);
else
V « UnmarkedHeadOfQueue;
Drop all packets ahead of V',
TransmitUnmarkedPacket(V'),
end if;
else
TransmitPacket(P),
end if;
end if;
end while;

else

Fig. 2. Dequeueing routine of the CL{c) scheduler.

TransmitUnmarkedPacket(P)
if (EDDQueue.length > 2) then
Remove EDDHead from EDDQueue;
L« CurrentHeadOfEDDQueue;
if (E.EDD < HeadED) then
HeadED «— HeadED - E.EDD;
else
HeadED «— 0; TailED « 0,
end if;
TransmitPacket(P);
else
TransmitPacket(P);
Remove EDDHead from EDDQueue;
/% New unmarked packets may arrive during
the transmission. */
E «— CurrentHeadOfEDDQueue;
if (£ # NULL AND E.EDD < HeadED) then
HeadED «— HeadED — E.EDD;
else
HeadED «- 0; TailED — 0;
end if;
end if;

Fig. 3. Transmit Unmarked Packet routine used by the dequeue-
ing routine of the CL.(a) scheduler.

Thus,
(D

Note that the quantity ED;._;(a;)— ED;(a;) does not change
with time, and is a constant for a given . To further simplify our
presentation and analysis, we define this quantity below.

Definition 3: Consider an unmarked packet 4, and its prede-
cessor unmarked packet : — 1. At the instant a; when packet :
arrives, if the predecessor packet has not yet completed its trans-
mission, define ExtraDelayDifference; or EDD; of an unmarked
packet i as the difference between the extra delay of packets
7 — 1 and < at time instant a;. If the predecessor packet has
already completed its transmission, define EDD; as 0.

In other words, EDD; = ED;_1{a;)— ED;(a;) if unmarked

EDi(t) = EDi_l(t) — [EDi_l(ai) - EDz(CLl)]

SHI AND SETHU: ON SCHEDULING REAL-TIME TRAFFIC UNDER CONTROLLED...

packet i arrives while unmarked packet i —1 is still in the system,
and EDD; = 0 otherwise.
Now, from (1),

ED;(t) = ED;_(t) — EDD;.)

Therefore, ED;(t) can be obtained from EDD;, and the extra
delay of the predecessor packet in the queue, ED;_1 (¢).

For each unmarked packet ¢ in the queue awaiting transmis-
sion, one may associate a constant value, EDD;. The scheduler
maintains these EDD values in a separate queue, which we shall
denote by EDDQueue. The head of this queue, denoted by ED-
DHead, contains the EDD value corresponding to the unmarked
head. Similarly, the tail of this queue, denoted by EDDTuil,
contains the EDD value corresponding to the unmarked tail. Let
packet h be the unmarked head at time ¢. If there is another un-
marked packet in the queue, then the next unmarked packet in
the queue, packet h + 1, should have a corresponding entry in
the EDD queue equal to EDD}, ;1. Note from (2) that EDp, 1 1(t)
can be computed from EDDp 11 and the HeadED (extra delay
of packet h) at time t. After packet A is transmitted, the value
computed for EDj, 1 becomes the new HeadED, since packet
h 4 1is now the new unmarked head. Thus, HeadED, always
contains the extra delay corresponding to the current unmarked
head which has not yet completed transmission.

B. Computing EDD

The above mechanism of tracking the extra delay of each un-
marked packet relies upon knowledge of the correct EDD value
corresponding to the packet. The CL(«) scheduler sets this value
for each unmarked packet at the instant that the packet arrives
into the queue. We will need the following definition and lemma
to explain the algorithm used to determine the EDD value of an
unmarked packet.

Definition 4: Consider the system at time instant ¢. Define
U(t) as the minimum possible additional time it will take for
the unmarked tail in the system at time ¢ to complete its trans-
mission.

U(t) may also be thought of as the additional time it will take
a packet that arrives at time ¢ to begin its transmission if all
marked packets in the system that have not yet begun transmis-
sion at time ¢ are dropped. In this paper, we assume that un-
marked packets will not pre-empt the transmission of a marked
packet. Therefore, U (¢t) includes the residual transmission time
of the packet being transmitted at time ¢ even if it is a marked
packet. Thus, U (¢) is the sum of this residual transmission time
and the transmission times of all the unmarked packets in the
queue at time ¢ awaiting the beginning of transmission.

We now proceed to obtain an expression for ED;(a;) that fa-
cilitates the computation of the EDD values.

Lemma 1: During an execution of the CL(«) scheduler,
when unmarked packet ¢ arrives into the queue at time instant
a;,

EDi(ai) = min{EDi_l(ai), U(ai)},
if its predecessor, packet ¢ — 1, has not yet completed transmis-
sion (ai S di—l)y and,

EDz(al) = U(CLZ‘),

77

otherwise.

Proof: Since ED;(a;) records the cumulative additional
delay of packet i caused by marked packet transmissions before
time a;, we prove the statement of the theorem by comparing the
departure time of the packet in the CL(«) scheduler assuming no
marked packet is transmitted after a; and its departure time in a
reference system which drops ail marked packets.

In this proof, we now separately consider each of the two
cases in the statement of the lemma.

Case (1): (a; < d;—1): In this case, the predecessor packet
has not yet completed transmission at time a,. If an unmarked
packet ¢ arrives at time a;, the earliest possible time at which it
can begin transmission is a; + U(a;), which can occur only if
no additional marked packets are transmitted after time a;. Its
earliest departure time is a; + U(a;) + L;/R, where L; is the
length of the packet and R is the peak rate of the link. Let d;
be the departure time of the packet using the reference sched-
uler that drops all marked packets. The extra delay of packet
i at time a;, ED;(a;), is the component of the delay caused to
the packet due to transmissions of marked packets before time
instant a;. Therefore, thisAis nothing but the difference between
a; + U(a;) + L;/R and d;. In other words,
EDi(ai) =a; + U(ai)+Li/R——di. 3)
We will now consider two sub-cases and use (3) above to
prove the lemma.

Sub-Case A: (ED;_1(a;) < Uf(a;)): This sub-case is illus-
trated in Fig. 4(a). In this case, packet ¢ — 1 departs at time
di—1 = a; + [U(a;) — ED,;_;(a;)] in the reference system. In
the reference system, packet 7 can begins its transmission at time
d;—1 and completes the transmission at time d; = d;_; + L;/R.

Using (3),

ED(a;) = <ai + Ula;) + %)

_ (ai +[Ula:) = EDi—y1(a0)] + %>

= EDi_1 (ai).

Sub-Case B (ED;_1{a;) > U(a;)): This sub-case is illustrated
in Fig. 4(b). In this sub-case, packet i — 1 has already completed
its transmission in the reference system at time instant a;. There-
fore, in the reference system, packet ¢ will find the queue empty
upon arrival at time a,; and will begin transmission immediately.
Thus, the departure time for packet i in the reference system is
d; = a; + L;/R. Using (3) again, we have,

(m b U(a) + %) - (ai 4 %) _

Case (2) (a; > d;—1): For the case that packet ¢ — 1 has com-
pleted its transmission at time a; in the CL(«) scheduler, the ex-
tra delay of packet ¢ is not simply zero even though it is the only
unmarked packet in the queue. When packet i arrives, the sched-
uler may be transmitting a marked packet. Since the scheduler
does not pre-empt this transmission, the unmarked packet will

ED;(a;) = Ula;).

78

Time increases

a,

bl
CL(e) [i-2 [><TJi-1 [i |
Jli J

| EDi =ED,

Ref [i=2 [i-I

Ulay)
(a)

+ Unmarked packet arrival

¢ Marked packet arrival

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 5, NO. 1. MARCH 2003

Time increases

diy 4 a;
I !
CL(a) [i-2 [><Ji-1 i |

Ref Li-2 |i-1

(b)

[| Unmarked packet transmission

Marked packet transmission

Fig. 4. IHustration of the sub-cases 1A and 1B in the proof of Lemma 1.

acquire an extra delay equal to U(a;), the residual transmission
time of the marked packet currently being transmitted. |

Lemma 1 relates the extra delay of a newly arrived packet at
time a; to that of its predecessor packet and to U(a;). The extra
delay of the predecessor packet is nothing but the TailED main-
tained by the scheduler. U(t) is also easily maintained by the
scheduler with updates upon the arrival and departure of pack-
ets. This allows an easy computation of the EDD value cor-
responding to each packet, representing the difference between
the extra delay values at time a,; between that of packet ¢ and its
predecessor.

C. Limiting ED to o

In Lemma 1, it is proved that EDy(t) is no more than
EDy_1(t). Thus, the unmarked head has the largest ED(t) for
any given ¢ among all the unmarked packets in the queue. When
the scheduler tries to send a marked packet, it only needs to
make sure that the HeadED will not exceed «. Thus, checking
the EDs of all the packets in the queue is rendered unnecessary,
and thus reduces the per-packet work complexity to O(1).

If HeadED will exceed o upon transmission of a marked
packet, the scheduler will drop that marked packet and all
marked packets ahead of the unmarked head before beginning
the transmission of the unmarked head. Searching the queue for
the next unmarked packet is obviously not a scalable option,
and will not preserve the O(1) complexity of this algorithm.
Therefore, the CL(«) scheduler associates with each element
of EDDQueue a pointer that indicates the position or address
of the corresponding unmarked packet in the queue. Recall that
each element of EDDQueue corresponds to a unique unmarked
packet in the gueue. When the scheduler determines that the
marked packet at the head of the queue cannot be transmitted,
it can simply look up the pointer associated with the EDDHead
and send the unmarked packet corresponding to it.

IV. ANALYSIS

In this section, we present an analysis of the performance and
the efficiency of the CL(c) scheduler and prove that the sched-
uler satisfies the requirements listed in Section II.

Theorem 1: The CL(a) scheduler has a per-packet work
complexity of O(1).

Proof: All of the operations in the enqueueing and de-
queueing routines are shown in Figs. 1, 2, and 3. The theorem is
proved by showing that the number of these operations is O(1).

To enqueue an unmarked packet, one needs to find out the
states of the scheduling system, set EDD and add it to ED-
DQueue, set TailED, and finally append the packet to the end of
the queue. To enqueue a marked packet, the server needs only
one operation of appending the packet to the end of the queue.
In either case, the number of operations of constant time com-
plexity is bounded by a small finite constant. Thus, the Enqueue
routine in Fig. 1 has a per-packet work complexity of O(1).

In dequeueing an unmarked packet, one needs to update
HeadED and TuailED, operations that are readily verified to be
of O(1) time complexity. In dequeuing a marked packet, the
scheduler needs to first determine if it should be transmitted at
all, which is based on a simple comparison operation. If the
packet is to be transmitted, the scheduler only needs to update
HeadED and TailED, which again involves only an O(1) com-
plexity in time. If the marked packet is not to be transmitted,
the scheduler dequeues the unmarked head packet in O(1) time
using the pointer stored in the elements of the EDDQueue and
without going through a search operation among the packets.
Thus, the total time taken to dequeue a marked packet is also of
complexity O(1). O

A. Bound on the Extra Delay

In the following, we prove that the CL{c) scheduler correctly
computes the extra delay of each unmarked packet, and that the
CL(a) scheduler successfully bounds the extra delay of each
unmarked packet to a.

SHI AND SETHU: ON SCHEDULING REAL-TIME TRAFFIC UNDER CONTROLLED...

79

Table 1. Settings for MPEG-4 traffic sources and token bucket regulators.

r Source ﬂ 1 L 2 T 3 f 4 T 5 J 6 j 7 J
Movie Name! J S W B D K F
Video Quality |} High | Medium | High | Medium | High High High

Ly (bytes) 72 28 26 27 71 307 130
Lyay (bytes) || 16,745 | 11,915 | 9370 | 7,565 16,960 | 15,813 | 14,431
Tavg (Kbps) 770 180 280 180 700 830 840

Tpeak (Mbps) 33 24 1.9 1.5 34 32 2.9
p; (Kbps) 567 135 203 135 473 567 709
o; (bytes) 16,755 | 11,935 {9,384 { 7,570 16,982 | 15,848 | 14,458
Link Capacity 2.83 Mbps
« 50 ms
Total Time 160 seconds

Theorem 2: During any execution of the CL(«a) scheduling
discipline, the additional delay of an unmarked packet caused
by the transmission of marked packets is never greater than .

Proof: The CL{a) scheduler computes the values in the
EDDQueue based on Lemma 1. When the unmarked head is
transmitted, as per Equation (2), a new value of HeadED is com-
puted as the difference between the previous value and the EDD
value corresponding to the new unmarked head. Thus, HeadED
represents the extra delay of the new unmarked head. For each
marked packet transmission thereafter, the CL{c) scheduler in-
crements the HeadED value by the transmission time of the
marked packet. Thus, the HeadED value always contains the
extra delay of the unmarked head packet at all time instants. Re-
call that the CL(«) scheduler does not transmit a marked packet
if its transmission time plus HeadED is larger than «. There-
fore, if an unmarked packet becomes the unmarked head with
an extra delay of less than or equal to «, it will be transmitted
early enough to ensure that its extra delay never goes beyond o.

Using induction on the sequence on unmarked packets, we
now proceed to show that every unmarked packet has an extra
delay less than or equal to « when it becomes the unmarked
head.

As the basis step of the induction, consider the very first un-
marked packet that arrives at the scheduler. This becomes the
unmarked head with a HeadED value equal to the residual time
of the current marked packet transmission, which is guaranteed
to be less than or equal to a.

As part of the inductive step of the proof, assume that each
of the unmarked packets until packet ¢ — 1, i.e., each unmarked
packet that arrive at or before a;_1, experiences an extra delay
of no more than o when it becomes the unmarked head. We
have to now prove that packet ¢ will also experience an extra
delay of no more than o when it becomes the unmarked head.
We consider two cases:

e [If unmarked packet ¢ arrives after packet ¢ — 1 com-
pletes transmission, it immediately becomes the current
unmarked head similar to the case of the first unmarked
packet that arrives in the system. Therefore, it has an ex-
tra delay no more than o when it becomes the unmarked
head.

o If unmarked packet i arrives before packet ¢ — 1 completes

transmission, from Lemma 1, the extra delay of packet ¢
is always less than or equal to the extra delay of packet
¢ — 1 until packet i — 1 completes transmission. Since
packet ¢ — 1 is transmitted with an extra delay of less than
or equal to a, packet ¢ will have an extra delay of no more
than o when it becomes the unmarked head.

From the above inductive proof, every unmarked packet has
an extra delay less than or equal to o when it becomes the un-
marked head. Now, as long as the packet has an extra delay of
less than or equal to a when it becomes the unmarked head, it
will be transmitted before its extra delay goes higher than « as
is ensured by the CL(«) scheduler. This proves the theorem. O

V. SIMULATION RESULTS

The effectiveness of the CL(a) scheduler may be demon-
strated using simulation. In our simulation, we use seven
sources, each of which generates an MPEG-4 video stream.
These video streams of certain popular movies and sports pro-
grams are from the traces made available by the Telecommu-
nication Networks Group at the Technical University of Berlin,
Germany [11). In order to remove any effects due to possible
correlation between early portions of the video streams, in our
simulation, each source begins transmitting at a random point
within the movie trace. The generated traffic is policed by token
bucket regulators and associated packet markers before it arrives
at our CL() scheduler. The traffic policer and marker for flow ¢
is configured to allow a long-term average rate of p; and a max-
imum burst size of g;. Packets in the source traffic that do not
conform to these token bucket parameters are marked. Fig. 5 il-
lustrates the simulation setup. The details of the video stream
sources and the token bucket parameters are listed in Table 1.

We assume that, through the capacity planning phase, traffic
policers are configured so that), p; < R, where R is the peak
link rate at the output of the scheduler. In our experiment, we
use values of the token generation rates, p;, such that >, p; =
(.98 R. We also ensure that each source traffic has a higher long-
term average rate than allowed by the policer, so that a sufficient
number of marked packets are generated to verify the algorithm.

IThe alphabet letters stand for the following movies and sports programs:
J: “Jurassic Park 17 S: “Silence Of the Lambs™ W: “Star Wars IV”
B: “Mr. Bean” D:“Die Hard II” K: “Alpine Ski” F: “Formula 1.”

80

Traffic

Source
Monitor/Marker

Unmarked Unmarked
aj ea

[} Unmarked Packet ¥ Marked Packet

o o o
E [0

Cumulative Distribution

o
N

S R W ——

0 0.01 0.02 0.03 0.04
Extra Delay (second)

(@)

0.06

Distribution Density
g
ﬁ—_‘,‘—_ﬂ—_—,-—a

0 0.01 002 003 004 005
Extra Delay (second)

(b)

Fig. 6. Distribution of the extra delay from CL(«) scheduler: (a) cumuia-
tive distribution (b) distribution density.

In our simulation, the peak link rate R is selected to be smaller
than the sum of the average transmission rates (not the same as
the corresponding token generation rate) of video streams so that
the input queue is backlogged most of time with either marked
or unmarked packets, and so that some marked packets would
have to be dropped.

Our simulation implements an instance of the CL(q) sched-
uler where o = 50 ms. The duration of the simulation is 160
seconds. Fig. 6(a) shows a cumulative distribution of the extra
delay of unmarked packets that go through the CL(c) sched-
uler over the length of the experiment. Fig. 6(b) shows the dis-
tribution density represented as a histogram of the extra delay
experienced by these unmarked packets. Fig. 6 verifies that no

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 5, NO. I, MARCH 2003

[e
[— cL@]

scheduier "/ i
Le |

Ideal scheduler

|
!
|
|
i
4]
|

Marked traffic sent(byte)
(22}

120 160

80 C
Time(second)

Fig. 7. The amount of data from marked packets sent by the Cl(c)
scheduler and by the ideal but more complex scheduler.

unmarked packets suffer an extra delay greater than o = 50 ms
in the CL() scheduler.

Once the CL(o) scheduler determines that transmitting the
marked packet at the head of the queue will increase the ex-
tra delay of an unmarked packet beyond ¢, it decides to send
the unmarked packet and drop all marked packets ahead of it.
This ensures the O(1) per-packet complexity of the scheduler.
At a greater complexity, one might design a scheduler that tries
to send a smaller marked packet that will also not increase the
extra delay of the unmarked head beyond «, and thus increase
the number of marked packets that are transmitted. In fact, an
ideal scheduler that maximizes the data in marked packet trans-
missions will need to examine each marked packet in the queue
ahead of the unmarked head, and send exactly the set of marked
packets that together make up the largest amount of data that
can be transmitted without increasing the extra delay of the un-
marked head beyond . However, this will require the sched-
uler to examine each of the marked packets in the queue ahead
of the unmarked head, and the number of packets one may have
to examine is unbounded except by the size of the queue. Our
CL(«) scheduler makes a compromise in favor of achieving sim-
plicity of implementation and a lower per-packet work com-
plexity. Fig. 7 shows the amount of data from marked pack-
ets transmitted by the CL(a) scheduler and that transmitted by
the ideal scheduler under the simulation setup described earlier.
The figure illustrates that the amount of data in marked packets
transmitted using the CL{«) scheduler is almost identical to that
transmitted by an ideal but more complex scheduler.

VI. CONCLUDING REMARKS

In this paper, we have defined the requirements of a scheduler
serving packets belonging to the controlled load service defined
within IETF’s Integrated Services architecture. The controlled
load service requires source points to regulate the traffic and
mark packets that are sent in violation of the traffic contract.
One of the requirements we define is that the additional delay
of unmarked packets caused due to the transmission of marked
packets should be bounded. A O(1) scheduler to achieve this

SHI AND SETHU: ON SCHEDULING REAL-TIME TRAFFIC UNDER CONTROLLED...

bound is non-trivial. In this paper, we have proposed the CL{«)
scheduler, which bounds this extra delay to « or less.

The principle used in this algorithm may also be used to
schedule flows with multi-level priorities, such as in some scal-
able real-time video streams as well as in other emerging service
models of the Internet that mark packets to identify drop prece-
dences [6], [4], and [12]. In such cases with multiple levels of
drop precedences, the principle of the CL(«) scheduler would
have to be applied in a hierarchical manner to bound the impact
of each lower priority layer on the delays experienced by higher
priority layers. For example, consider flows of packets with
three priority levels labeled as type 1, type 2 or type 3 pack-
ets, with type 1 at the highest priority level. In transmissions
using such layered coding, one may get tolerable quality from
receiving just type 1 packets. The quality of the received video
and audio deteriorates if a type 1 packet is delayed or dropped,
but not as much if a type 2 packet is delayed or dropped, and
even less when a type 3 packet is delayed or dropped. The extra
delay of a type 1 packet due to the transmissions of type 2 pack-
ets could be required to be less than a certain quantity o o and
that due to transmissions of type 3 packets could be required to
be less than another quantity o 3. Similarly, the extra delay of
a type 2 packet due to transmissions of type 3 packets may be
bounded by a2 3. One may infer ED values corresponding to
each of these three relationships through maintaining three dif-
ferent EDD queues, with each queue managed similarly as in
the case of the CL(«c) scheduler presented in this paper. Trade-
offs between scheduler complexity, desired quality and band-
width capacity may be achieved by adjusting the « values and
the number of relationships for which an « value is defined.

REFERENCES

{11 J. Wroclawski, “RFC 2210: The use of RSVP with IETF integrated ser-
vices,” Sept. 1997.

[2]1 J. Wroclawski, “RFC 2211: Specification of the controlled-load network
element service,” Sept. 1997.

[31 U. Horn and B. Girod, “Scalable video transmission for the internet,”
Computer Networks and ISDN Systems, vol. 29, no. 15, pp. 1833-1842,
Nov. 1997.

[4] S. Blake er al., “RFC 2475: An architecture for differentiated services,”
Dec. 1998.

[5] S.Jamin, S. J. Shenker, and P. B. Danzig, “Comparison of measurement-
based admission control algorithms for controlled-load service,” in Proc.
IEEE INFOCOM, 1997, vol. 3, pp. 973-980.

81

[6] D. Clark and W. Fang, “Explicit allocation of best-effort packet delivery
service,” IEEE/ACM Trans. Networking, vol. 6, no. 4, Aug. 1998.

[71 S.McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven layered mul-
ticast,” in Proc. ACM SIGCOMM, Stanford, CA, Aug. 1996, pp. 117-130.

[8] R. Guérin and V. Peris, “Quality-of-service in packet networks: basic
mechanisms and directions,” Computer Networks, vol. 31, no. 3, pp. 169—
179, Feb. 1999.

[9] K. Siriwong and R. Ammar, “QoS using delay-synchronized dynamic

priority scheduling,” in Proc. Sixth IEEE Symp. Computers and Commun.,

July 2001, pp. 276-281.

H. Zhang, “Service disciplines for guaranteed performance service in

packet-switching networks,” in Proc. IEEE, vol. 83, no. 10, pp. 1374—

1396, Oct. 1995.

Telecommunication Networks Group, “MPEG-4 and H.263 video traces

for network performance evaluation,” available at http://www-tkn.ee.tu-

berlin.de/research/trace/trace.html.

W.-C. Cheng er al, “Adaptive packet marking for maintaining end-to-

end throughput in a differentiated services internet,” IEEE/ACM Trans.

Networking, vol. 7, no. 5, Oct. 1999.

[t0]

(11}

(12]

Hongyuan Shi graduated in 1998 from Tsinghua Uni-
versity in Beijing, China, with a B.S. in electronic en-
gineering. She subsequently joined the Department of
ECE at Drexel University as a graduate student and is
now a research assistant in the Computer Communi-
cations Laboratory. She is currently pursuing a Ph.D.
in electrical engineering with a dissertation in the area
of packet scheduling strategies for new emerging ser-
vice models for the Internet. She has also been an
intern at Telcordia Technologies, developing compo-
nent modules for a simulation tool on the transmission
performance of optical networks. Her current research interests include quality-
of-service in issues in computer networks and the architecture and design of
high-speed optical routers.

Harish Sethu obtained his B.Tech in Electronics and
Communication Engineering from Indian Institute of
Technology (IIT), Chennai, in 1988. He received his
Ph.D. in Electrical Engineering from Lehigh Univer-
sity in 1992 with a doctoral dissertation in the area
of computer architecture and parallel processing. He
spent nearly six years in the RS/6000 SP Division of
IBM Corporation where he contributed to the hard-
ware, software and system-level design of more than
two generations of the SP family of high-performance
parallel computers. He is now an assistant professor
in the Department of Electrical and Computer Engineering at Drexel University.
He was a recipient of the NSF CAREER award in the year 2000. He has been
awarded three U.S. patents. His most recent research efforts have been in the
areas of quality of service in computer networks, switch/router architectures,
Internet economics and large-scale distributed systems and networks including
mobile ad hoc networks and sensor networks.

