LP-Based Blind Adaptive Channel Identification and Equalization with Phase Offset Compensation

  • Ahn, Kyung-Sseung (Department of Electronic Engineering, Chonbuk National University) ;
  • Baik, Heung-Ki (Division of Electronics & Information Engineering, Electrinics & Information Advanced Technology Research Center, Chonbuk National University)
  • 발행 : 2003.04.01

초록

Blind channel identification and equalization attempt to identify the communication channel and to remove the inter-symbol interference caused by a communication channel without using any known trainning sequences. In this paper, we propose a blind adaptive channel identification and equalization algorithm with phase offset compensation for single-input multiple-output (SIMO) channel. It is based on the one-step forward multichannel linear prediction error method and can be implemented by an RLS algorithm. Phase offset problem, we use a blind adaptive algorithm called the constant modulus derotator (CMD) algorithm based on condtant modulus algorithm (CMA). Moreover, unlike many known subspace (SS) methods or cross relation (CR) methods, our proposed algorithms do not require channel order estimation. Therefore, our algorithms are robust to channel order mismatch.

키워드

참고문헌

  1. J. G. Proakis, Digitat Communication, 4th ed. New York: McGraw Hill, 2000
  2. G. Giannakis and J. Mendel, 'Identification of nonminimum phase system using higher-order statistics,' IEEE Trans. Acoust. Sppech and Si gnat Processing, vol. 37, no. 3, PP. 360-377, Mar. 1989 https://doi.org/10.1109/29.21704
  3. L. Tong, G. Xu, and T. Kailath, 'Identification of nonminimum phase system using higher-order statistics,' IEEE Trans. Inform. Theory, vol. 40, no. 2, PP. 340-349, Mar. 1994 https://doi.org/10.1109/18.312157
  4. L. Tong, G. Xu, B. Hassibi, and T. Kailath, 'Blind channel identification based on Secondorder statistics: A frequency- domain approach,' IEEE Trans. Inform. Theory, vol. 41, no. 1, PP. 329-334, Jan. 1995 https://doi.org/10.1109/18.370088
  5. E. Moulines, P. Duhamel, J. F. Cardoso, and S. Mayrargue, 'Subspace methods for the blind identification of multichannel FIR filter,' IEEE Trans. Sienat Processing, vol. 43, no. 2, pp. 516-525, Peb. 1995 https://doi.org/10.1109/78.348133
  6. G. Xu, H. Liu, L. Tong, and T. Kailath, 'A 1 east-squares approach to blind channel identification,' IEEE Trnas. Signat Processing, vol. 47, no. 12, pp. 2982-2993, Dec. 1995
  7. D. T. M. Slock, 'Blind fractionally spaced eq ualization, Perfect reconstruction filter banks and multichannel linear prediction,' in Proc. 1CASSP, Adelaide, Australia, Apr. 1994, pp. 585-588
  8. D. T. M. Slock and C. B. Papadias, 'Further results on blind identification and equalization of multiple PIR channels,' in Proc. fCASSP, Detroit, USA, May 1995, pp. 1964-1967
  9. C. B. Papadias and D. T. M. Slock, 'Fraction ally spaced equalization of linear polyphase ch annels and related blind techniques based on multichannel linear prediction,' IEEE Trans. Signat Processing, vol. 47, no. 3, pp. 641-653, Mar. 1999 https://doi.org/10.1109/78.747772
  10. K. Abed-Meraim, E. Moulines, and P. Loubaton, 'Prediction error method for second-order blind identification,' IEEE Trans. SignaI Proce ssing, vol. 45, no. 3, pp. 694-704, Mar. 1997 https://doi.org/10.1109/78.558487
  11. X. Li and H. Fan, 'Linear prediction methods for blind fractionally spaced equalization,' IEEE Trans. SignaI Processing, vol. 48, no. 6, pp. 1667-1675, June 2000 https://doi.org/10.1109/78.845924
  12. L. Tong and S. Perreau, 'Multichannel blind identification: from subspace to maximum likel ihood methods,' Proc. IEEE, vol. 86, no. 10, pp. 1951-1968, Oct. 1998 https://doi.org/10.1109/5.720247
  13. K. V. Cartwright, 'Blind phase recovery in general QAM ommunication systems using alter native higher order statistics,' IEEE SignaI Processing betters, vol. 6, no. 12, pp. 327-329, Dec. 1999 https://doi.org/10.1109/97.803437
  14. W. Chung, W,A, Sethares, and C.R. Johnson, Jr., 'Blind adaptive phase offset correction,' in Proc. GLOBECOM, San Francisco, USA, Nov. 2000, pp. 1041-1045
  15. S. Haykin, Adaptive Fitter Theory, 3rd ed. Upper Saddle River, NJ: Prentice-Hall, 1996
  16. P. Common and G.H. Golub, 'Tracking a few extreme singular values and vectors in signal processing,' Proc. IEEE, vol. 78, no. 8, pp. 1327-1343, Aug. 1990 https://doi.org/10.1109/5.58320
  17. K. S. Ahn, E. C. Byun, and H. K. Baik, 'Blind channel identification based on eigenvalue decomposition using constrained LMS algorithm,' IEEE Trans. Commun., vol. E85-B, no. 5, pp. 961-966, May 2002