The Design of GF(2m) Parallel Multiplier using data select methodology

데이터 선택방식에 의한 GF(2m)상의 병렬 승산기 설계

  • 변기영 (인하대학교 전자공학과 회로및시스템 연구실) ;
  • 최영희 (인하대학교 전자공학과 회로및시스템 연구실) ;
  • 김흥수 (인하대학교 전자공학과 회로및시스템 연구실)
  • Published : 2003.02.01

Abstract

In this paper, the new multiplicative algorithm using standard basis over GF(2m) is proposed. The multiplicative process is simplified by data select method in proposed algorithm. After multiplicative operation, the terms of degree greater than m can be expressed as a polynomial of standard basis with degree less than m by irreducible polynomial. For circuit implementation of proposed algorithm, we design the circuit using multiplexer and show the example over GF(24). The proposed architectures are regular and simple extension for m. Also, the comparison result show that the proposed architecture is more simple than privious multipliers. Therefore, it well suited for VLSI realization and application other operation circuits.

본 논문에서는 GF(2m)상의 표준기저를 사용한 새로운 형태의 승산 알고리즘을 제안하였다. 제안된 알고리즘에서 승산의 전개를 데이터 선택방식으로 취하여 연산과정을 단순화하였다. 승산연산의 결과 발생하는 m차 이상의 차수를 갖는 항에 대하여 기약다항식을 적용하여 m-1차 이하의 표준기저들로 나타나게 하였다. 제안된 알고리즘의 회로구현을 위해 멀티플렉서를 사용하여 회로를 구성하였고, GF(24)에 대한 설계의 예를 보였다. 새로운 승산회로는 그 구성이 규칙성을 가지며 m의 증가에 대한 확장이 용이하다. 또한, 타 논문과의 비교결과 사용소자의 수가 비교적 적다. 따라서, VLSI의 실현과 타 연산회로에의 적용에 적합하다 할 수 있다.

Keywords

References

  1. B.A.Laws and C.K.Rushford, 'A Cellular-Array Multiplier for GF(2m)' IEEE Trans. Computers, vol. C-20, no. 12, pp. 1573-1578, Dec. 1971 https://doi.org/10.1109/T-C.1971.223173
  2. C.S.Yeh, I.S.Reed, and T.K.Trung. 'Systolic multipliers for finite field GF(2m),' IEEE Trans. Computers, vol. C-33, pp. 357-360, Apr. 1984 https://doi.org/10.1109/TC.1984.1676441
  3. J.Qmura and J.Massey, 'Computational Method and Apparatus for Finite Fields,' U.S. Patent no. 4,587,627, May 1986
  4. C.C.Wang, T.K.Trung, H.M.Shao, L. J.Deutsch, J.K. Omura, and I.S.Reed., ' VLSI Architecture for Computing Multiplications and Inverses in GF(2m),' IEEE Trans. Computers, vol.C-34, pp. 709-717, Aug. 1985 https://doi.org/10.1109/TC.1985.1676616
  5. E.R. Berlekamp, 'Bit-Serial Reed Solomon Encoders,' IEEE Trans. Information Theory, vol. 28, pp. 869-874, Nov. 1982 https://doi.org/10.1109/TIT.1982.1056591
  6. S.T.J.Fenn, M.Benaissa, and D.Taylor, ' GF(2m) Multiplication and Division Over the Dual Basis,' IEEE Trans. Computers, vol.45, No.3, pp.37-46, Jan. 1982
  7. I.S.Hsu, T.K.Troung, L.J.Deutsch, and I.S.Reed, 'A Comparision of VLSI Architecture of Multipliers using Dual, Normal, or Standard Bases,' IEEE Trans. Computers, vol. C-37, pp. 735-739, 1988
  8. E.D.Mastrovito, 'VLSI Design for Multiplication over Finite Fields,' LNCS-357, Proc. AAECC-6, pp.297-309, Rome, July 1988, Spring-Verlag
  9. G.L.Feng, 'A VLSI Architecture for Fast Inversion in GF(2m),' IEEE Trans. Computers, vol. 38, no. 10, Oct. 1989
  10. C.K.Koc, and B.Sunar, 'Low- Complexity Bit Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields,' IEEE Trans. Computer, vol. 47, no.3. pp.353-356. Mar. 1998 https://doi.org/10.1109/12.660172
  11. C.Y.Lee, E.H.Lu, and J.Y.Lee, 'Bit Parallel Systolic Multipliers for GF(2m) Fields Defined by All-One and Equally Spaced Polynomials,'c, vol. 50, No.5, pp.385-393, May 2001 https://doi.org/10.1109/12.926154
  12. Kiamal Z. Pekmestzi, 'Multiplexer-Based Array Multipliers,' IEEE Trans. Computers, vol. 48, no.l, pp.15-23. Jan. 1999 https://doi.org/10.1109/12.743408
  13. M. Kameyama and T. Higuchi, 'Multiple-valued Logic and Special Purpose Processors : Overview and Future,' Proc. IEEE Int. Symp. Multiple-Valued Logic, pp.289-292, 1982
  14. M. Nakajima and M. Kameyama, 'Design of Highly Parallel Linear Digital System for ULSI Processors', IEICE Trans, Vol.E76-C, no.7, pp.1119-1125, Jul. 1993
  15. Y.Hata, N.Kamiura, and K.Yamato, 'Design of Multiple-Valued Programmable Logic Array with Unary Function Generators', IEICE Trans, vol. E82-D no.9, pp.1154-1160, Sep. 1999
  16. S.B.Wicker and V.K.Bhargava, Error Correcting Coding Theory, McGraw-Hill, New York, 1989
  17. S.Lin, Error Control Coding, Prentic e-Hall, Inc. New Jersey, 1983
  18. A.Gill, Linear Sequential Circuits, McGraw-Hill Book Co., Newyork. 1966
  19. H.Anton, Elementary Linear Algebra, John Wiley & Sons, Inc., Newyork. 1994
  20. E.Kreyszig, Advanced Engineering Mathematics 8/e, John Wiley & Sons, Inc., Newyork. 1999