Abstract
This paper proposes Galois Field Arithmetic Unit(GFAU) whose structure does addition, multiplication and division in GF(2m). GFAU can execute maximum two additions, or two multiplications, or one addition and one multiplication. The base architecture of this GFAU is a divider based on modified Euclid's algorithm. The divider was modified to enable multiplication and addition, and the modified divider with the control logic became GFAU. The GFAU for GF(2193) was implemented with Verilog HDL with top-down methodology, and it was improved and verified by a cycle-based simulator written in C-language. The verified model was synthesized with Samsung 0.35um, 3.3V CMOS standard cell library, and it operates at 104.7MHz in the worst case of 3.0V, 85$^{\circ}C$, and it has about 25,889 gates.
본 논문에서는 GF(2m) 상에서의 ECC 암호화 알고리즘을 지원하기 위한 GFAU(Galois Field Arithmetic Unit)의 구조를 제안한다. GFAU는 GF(2m)상에서의 덧셈, 곱셈, 나눗셈을 수행하며 동시에 두 개의 덧셈이나 두 개의 곱셈, 또는 하나의 덧셈과 하나의 곱셈을 동시에 처리할 수 있는 능력을 가지고 있다. 기본 구조는 변형된 유클리드 알고리즘의 나눗셈기를 기반으로 제안되었으며, 이 기본구조에 곱셈기 및 덧셈기의 기능을 추가하여 제어부와 함께 구현되었다. GF(2193)을 위한 GFAU는 Verilog-HDL를 이용하여 하향식설계방식으로 구현되었고 C-언어로 작성된 사이클 단위 시뮬레이터를 이용하여 개선되고 검증되었다. 검증된 모델은 삼성 0.35um, 3.3V CMOS 표준 셀 라이브러리로 합성되었으며 최악조건 3.0V, 85$^{\circ}C$ 에서 104.7MHz의 주파수에서 동작하며, 전체 게이트 수는 약 25,889이다.