몬테칼로 유한차분 시간영역 방법을 이용한 프랙셔널 브라운 모션 프랙탈 완전도체 표면에서의 전자파 산란

Electromagnetic Wave Scattering from a Perfectly Conducting Fractional Brownian Motion Fractal Surface Using a Monte-Carlo FDTD Method

  • 최동묵 (경북대학교 공과대학 전자공학과) ;
  • 김채영 (경북대학교 공과대학 전자공학과)
  • 발행 : 2003.02.01

초록

본 논문에서는 몬테칼로 유한차분 시간영역 해석법을 이용하여 프랙탈 형상을 가진 완전 도체 표면에서 산란된 장을 구하였다. 프랙탈 형상을 가진 1차원 표면은 프랙셔널 브라운 모션 모델을 사용하여 생성하였다. 프랙탈 표면의 형상을 결정하는 스펙트럼 변수(S0), 프랙탈 차원(D)에 대한 역방향 산란계수를 계산하였다. 계산에 사용된 표면의 수는 80개, 표면의 점의 수는 1024개이고, 표면의 길이는 16파장이었다. 계산된 결과의 타당성을 검증하기 위해 소 섭동 근사기법을 이용하여 계산된 결과와 비교하였다. 그 결과 양자간의 결과는 서로 잘 일치함을 알 수 있었다.

In this paper, the scattered field from a perfectly conducting fractal surface by Finite-Difference Time-Domain(FDTD) method was computed. A one-dimensional fractal surface was generated by using the fractional Brownian motion model. Back scattering coefficients are calculated with different values of the spectral parameter(S0), fractal dimension(D) which determine characteristics of the fractal surface. The number of surface realization for the computed field, the point number, and the width of surface realization are set to be 80, 1024, 16λ, respectively. In order to verify the computed results these results are compared with those of small perturbation methods, which show good agreement between them.

키워드

참고문헌

  1. J. A. Ogilvy, Theory of Wave Scatte ring from Random Rough Surfaces, New York, p. 1-117, 1991
  2. G. Franceschetti, A. lodice, M. Migli accio, D. Riccio, 'Scattering from Rough Surfaces Modeled by Fractiona1 Brownian Motion Two-Dimensiona1 Processes,' IEEE Trans. Antennas and Propagat., vol. 47, no. 9, pp. 1405-1415, Sept. 1999 https://doi.org/10.1109/8.793320
  3. G. Franceschetti, A. Iodice, M. Migliaccio, D. Riccio, ' Fractal and the small perturbation scattering model,' Radio Science, vol. 34, no. 5, pp. 1043-1054, 1999 https://doi.org/10.1029/1999RS900053
  4. R. Harrington, Field Computation by Moment Methods. New York : IEEE Press, 1993
  5. Allen Taflove, Computational Electro dynamics The Finite-Differenc Time-Domain Method : Artech House, U.S.A, pp. 51-226, 1995
  6. K. Demarest, Z. Huang, R. Plumb, ' An FDTD near-to far-zone transformation for scatterers buried in stratified grounds,' IEEE Trans. Antennas and Propagat., vol. 44, no. 8, pp. 1150-1157 Aug. 1996 https://doi.org/10.1109/8.511824
  7. K. Falconer, Fractal Geometry. London, U.K : Wiley, 1990, Ch 16
  8. R. F. Voss, 'Random Fractal Forgeries,' in Fundamental Algorithms for Computer Graphics, R. A. Eamshaw, Ed. Berlin, Germany : Springer Verlag, pp. 805-835, 1985
  9. Dwight L. Jaggard and Xiaoguang Sun, ' Scattering from bandlimited fractal fibers,' IEEE Trans. Antennas and Propagat., vol. 37, no. 12, pp. 1591-1597, Dec. 1989 https://doi.org/10.1109/8.45102
  10. Ericl. Thorsos, 'The validity of the kirchhoff approximation for the rough surface scattering using a Gaussian roughness spectrum,' J. Acoust. Soc. Am., vol. 83, no. 1, pp. 78-92, January 1989
  11. P. Flandrin, 'On the spectrum of fractional Brownian motions,' IEEE Trans. Information Theory, vol. 35, no. 1, pp. 197-199, Jan. 1989 https://doi.org/10.1109/18.42195
  12. G. Franceschetti, A. lodice, D. Riccio, 'Scattering from dielectric random fractal surfaces via method of moments,' IEEE Trans. Geosci. Remote Sensing, vol. 38, no. 4, PP. 1644-1654, July 2000 https://doi.org/10.1109/36.851964
  13. R. M. Axline, and A. K. Fung, 'Numerical computation of scattering from a perfectly conducting random surface,' IEEE Trans. Antennas and Propagat, vol. 26, pp. 482-488, May 1978 https://doi.org/10.1109/TAP.1978.1141871