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Low-Sampling Rate UWB Channel Characterization and
Synchronization

Irena Maravié, Julius Kusuma, and Martin Vetterli

Abstract: We consider the problem of low-sampling rate
high-resolution channel estimation and timing for digital ultra-
wideband (UWB) receivers. We extend some of our recent results in
sampling of certain classes of parametric non-bandlimited signals
and develop a frequency domain method for channel estimation
and synchronization in ultra-wideband systems, which uses sub-
Nyquist uniform sampling and well-studied computational proce-
dures. In particular, the proposed method can be used for identi-
fication of more realistic channel models, where different propaga-
tion paths undergo different frequency-selective fading. Moreover,
we show that it is possible to obtain high-resolution estimates of all
relevant channel parameters by sampling a received signal below
the traditional Nyquist rate. Our approach leads to faster acqui-
sition compared to current digital solutions, allows for slower A/D
converters, and potentially reduces power consumption of digital
UWB receivers significantly.

Index Terms: UWB, multipath channel, channel modeling, channel
estimation, sampling, annihilating filters, timing.

L. INTRODUCTION

Ultra-wideband (UWB) technology has recently received
much attention for many short-range applications, such as accu-
rate ranging and positioning as well as multipath fading mitiga-
tion in indoor wireless networks [1]-[5]. UWB signals are gen-
erated by driving an antenna with very short electrical pulses,
typically on the order of a nanosecond, thus spreading the signal
energy from near DC to a few gigahertz. Although the possibil-
ity of using extremely short pulses for certain applications (such
as ranging or imaging) has been investigated for at least two
decades, there still remains a lot to be done for this technology
to become pervasive. Some of the important issues include low-
cost and low-power designs and novel signal processing tech-
niques that allow for efficient digital implementation.

The wideband nature of UWB brings new research challenges
both in the analysis and practice of reliable systems. The first
challenge is rapid synchronization and acquisition for UWB sys-
tems. There is a vast literature that has appeared recently [1],
[2], [6]-[9], addressing both algorithmic and implementation is-
sues of several synchronization techniques, with a clear trend
to minimize needed analog components and perform as much
processing digitally as possible [6], [9]. Digital implementation
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has well-known advantages, including cheaper technology, full
integration, robustness, etc. However, given the extreme band-
widths involved, it still represents a design challenge. While
high-performance schemes have already been proposed for ana-
log systems {7], their application to digital-oriented solutions
is still not feasible due to prohibitively high computational re-
quirements. Furthermore, implementation of such techniques in
digital systems would require very fast and expensive A/D con-
verters (operating in the gigahertz range) and therefore will re-
sult in high power consumption. Finally, they are mostly based
on exhaustive search and are inherently time-consuming.

The second challenge arises from the fact that UWB prop-
agation models in multipath environments are more complex
than existing narrowband models and do not allow for direct
extension of narrowband techniques. The finer time resolution
of UWB means that different multipath components arriving at
the receiver at different delays and at different angles create a
dynamic and extended channel impulse [3]-{5]. To more accu-
rately characterize ultra-wideband channels, a new model was
proposed in which different incoming paths undergo different
frequency-selective attenuations [1]. In their paper, Cramer,
Scholtz and Win proposed to spatially separate the multipath
components, which is then followed by identifying the different
frequency-selective fading of the individual components. How-
ever, this requires additional hardware, in form of an antenna
array. They used the CLEAN algorithm for the processing of
the signal, which was first developed for space telemetry appli-
cations.

Starting with a simplified channel model, we develop a
method which inspires a new approach to channel estimation
and synchronization in wideband systems. This method yields
very precise estimates of channel parameters, and uses sub-
Nyquist uniform sampling and well-developed algorithmic so-
lutions. Specifically, we extend some of our recent sampling
results for certain classes of non-bandlimited signals [10] to the
problem of channel estimation in ultra-wideband systems [11]-
[15], where unknown channel parameters are estimated from
a low-dimensional signal subspace. Our approach leads to re-
duced computational requirements and faster acquisition com-
pared to other proposed digital techniques [6]-|9], thus allowing
for a practical hardware implementation and lower power con-
sumption. We will then extend this framework to a more realistic
channel model given in {1]. We show that our approach can be
used to characterize a more general channel model without re-
quiring additional hardware support. Our method is particularly
suitable in applications such as estimation of wideband chan-
nels, precise position location or ranging. It can be used in other
wideband systems as well, primarily for timing synchronization
and localization purposes.
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The outline of the paper is as follows. In Section II, we in-
troduce an UWB channel model and discuss the advantages of
the frequency-domain approach, as well as prior work in spec-
tral estimation. In Section III, we present an algorithm based
on annihilating filters, which allows for joint estimation of pulse
shapes and time delays along different propagation paths. We
also discuss a possible modification of the algorithm which leads
to improved performance in the presence of noise. Analysis of
noise sensitivity and computational complexity are discussed in
Section IV. In Section V, we present some simulation results
that indicate the effectiveness of our approach, showing perfor-
mances that exceed those of conventional methods. Finally, in
Section VI, we conclude with a brief summary of our work.

II. PROBLEM STATEMENT

Many communication systems require the receiver and/or the
transmitter to know the channel impulse response. Other ap-
plications, most notably GPS and UWB-based ranging systems,
require very accurate timing estimation. All of these systems
typically use very high sampling frequencies, or involve com-
plex hardware systems to enable highly-accurate timing estima-
tion.

Consider the following simple example. Let the signal z(t)
be a sum of delta functions with unknown delays {tl}f:”ol and

weighting coefficients {a;} 1",

L-1
z(t) =D ad(t —t). (1)
=0
Note that the Fourier transform of this signal is given by:
L-1
X(w) = aedh. )
1=0

By considering the frequency domain representation of the sig-
nal, we can convert the problem of estimating the unknown
parameters {t;}7-," and {a;}; ;" into the classic spectral es-
timation problem, that is, estimating complex frequencies and
weighting coefficients of superimposed exponentials.

The problem of high-resolution spectral estimation is well-
studied: There exists a rich body of literature on both the the-
oretical limits and efficient algorithms for reliable estimation
[16]-[19]. There is a particularly attractive class of subspace or
SVD-based algorithms, called super-resolution methods, which
can resolve closely spaced sinusoids from a short record of
noise-corrupted data. In [19], a state space method is proposed,
which provides an elegant and numerically robust tool for pa-
rameter estimation using a model-based approach. The ESPRIT
algorithm is developed in [18], which can be viewed as a gener-
alization of the state space method applicable to general antenna
arrays. In [17], several SVD-based techniques for estimating
generalized eigenvalues of matrix pencils are addressed, such as
Direct matrix pencil algorithm, Pro-ESPRIT and its improved
version TLS-ESPRIT.

The parameter estimation problem also arises in the context
of channel estimation in other wideband systems, such as DS-
CDMA [20], [21]. Even though methods developed for DS-
CDMA can be adapted to UWB systems, much higher sampling

rates in the latter as well as certain bandwidth-dependent effects
make the modeling and estimation of UWB channels a more
difficult problem and therefore require a different solution.

A. UWB Channel Estimation

A number of propagation studies for ultra-wideband signals
have been done, which take into account temporal properties of a
channel or characterize a spatio-temporal channel response [1],
[22]. A typical model for the impulse response of a multipath
fading channel is given by

L
h(t) =Y ad(t - t), 3)
=1

where t; denotes a signal delay along the [-th path while a; is
a complex propagation coefficient, which includes a channel at-
tenuation and a phase offset along the [-th path. Although this
model does not adequately reflect specific frequency-dependent
effects, it is commonly used for diversity reception schemes
in conventional wideband receivers (e.g., RAKE receivers) [1],
[23]. Equation (3) means that a received signal y(t) consists of
a weighted sum of attenuated and delayed replicas of a transmit-
ted signal s(t), i.e.,

L
y(t) = as(t—t) +2(t), “

=1

where z(t) denotes receiver noise. Clearly, the problem of esti-
mating unknown channel parameters a; and #; is a special case
of above mentioned spectral estimation problems.

However, different key parameters affect the behavior of
wideband channels as the bandwidth is increased. The finer
time resolution of UWB means that different multipath compo-
nents arriving at the receiver at different delays and at different
angles create a dynamic and extended channel impulse {3]-[5}].
To more accurately characterize ultra-wideband channels, a new
model was proposed in [1], in which different incoming paths
undergo different frequency-selective attenuations. This model
can be written as:

L
h(t) =Y api(t—t). (5)
=1
Thus, a received signal is made up of pulses having different
pulse shapes,

L
y(t) =Y asit —t) + 2(b), (6)

=1

where s, (t) are different pulse shapes that correspond to differ-
ent propagation paths. Let Y (w) denote the Fourier transform
of the received signal

L
Y(w) =) aSi(we " + Z(w),

=1

(N

where S;(w) and Z{w) are Fourier transforms of s;(t) and z(t)
respectively. Clearly, in order to completely characterize the
channel, we need to estimate the a;’s and #;’s as well as S;(w).
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In previous work [1], Cramer, Scholtz and Win used an an-
tenna array to achieve spatio-temporal separation of the received
signal components. We are interested in low-complexity, pos-
sibly even single-antenna applications, where the receiver can
resolve the different multipath components without resorting
to spatial separation. In the following section, we introduce
a frequency-domain method which takes advantage of the fact
that the multipath components will be subjected to independent
delays at the reception.

III. CHANNEL ESTIMATION METHOD

A. Theory
Let the ideal bandpass filter be given by:

®)

where w;, and wy are the cutoff frequencies, while the central
frequency is w, = “LF“U and let hy(t) be the time-domain
representation of this ideal bandpass filter.

Suppose that the received signal y(¢) is filtered with an ideal
bandpass filter with cutoff frequencies wy, and wy and sampled
uniformly at arate R, > “Us—*L_ Assume next that N = 2M +
1 uniformly spaced frequency samples of Y (w) are available,
that is,

Hy = rect(wy,wy) = 1[wL,wu]’

Y[n]:Y(wc+nQ)0), wo = %’ TL:—M,“',M.
9

If we denote by w, = w. + nwo, the samples Y [n] can be ex-
pressed as

L
Yin] = ZalSl [n]e~7“~f 4 Z[n),

=1

(10)

where S;[n] are the samples of the Fourier transform S(w,,) of
the received UWB pulses. Note that in practice, the discrete
Fourier transform (DFT) will be used to determine Y'[n] and
Si[n], therefore, in general, (9) and (10) will not hold exactly.
However, these equations are asymptotically accurate, provided
that the sampling period is sufficiently small to avoid aliasing
at the output of the bandpass filter since the error introduced by
a finite length DFT is on the order of O(N~!). Note that this
does not imply that the sampling rate has to be above the Nyquist
rate of the original signal, but rather the Nyquist rate which is
dictated by the bandpass filter.

In general, the problem of estimating all the unknown param-
eters requires a non-linear estimation procedure. One possible
way to convert the nonlinear estimation problem into the sim-
pler problem of estimating the parameters of a linear model is to
approximate the coefficients S;[n] with polynomials of degree
d < R —1, that is,

R-1

Si[n] = Z sien’.

r=0

an

Equation (7) now becomes

L R-1
Yn] = Z a Z si,mTe IOt 4 Zn). (12)
=1 r=0

By denoting ¢; » = a;5;,, we obtain

L R-1

Y[n] = Z Z cipn’e IOt 4 Z[n).
=1

r=0

(13)

Note that the coefficients Y'[n] are again given by a sum of
weighted exponentials, yet the weights depend on n (through
the term n"). In the following, we will present a method based
on annihilating filters [10], [15], [16], which allows for joint es-
timation of all the unknown parameters (c;,, and ¢;) from a set
of at least 2RL + 1 coefficients Y'[n].

The main idea behind this approach is to find the so-called
annihilating filter H(z) = fo:o H{[k]z~* that satisfies

(H+Y)[n]=0, VneZ. (14)

It can be shown that such a filter has multiple roots at z; =
e~ J«oti [10], that is,

RL

L
H(z) =[] - etz 8 = 3" Hlk] 7,

I=1 k=0

15)

where wp = “43#L (9). Therefore, the information about the
time delays ¢; can be extracted from the roots of the filter H(z).
The corresponding pulse shapes can be then estimated by solv-
ing for the coefficients ¢; » in (13). In the following, we give an
outline of the algorithm, while a more detailed analysis of the
annihilating filters can be found in [10], [15], and [16].

B. Algorithm Outline

1. Compute the spectral coefficients Y [n] from the set of sam-
ples

Yn =< hb(t_nTs)’y(t) >, nzla"'aNa (16)
where Ty = 1/R; and N > 2L.
2. Find the coefficients H[k] of the annihilating filter
L . R
H(z) = [J(1 - etz )R =N " H[K]27F,  (17)
=1 k=0
which satisfies
RL
Hn]«Y[n] =Y HKY[n—k =0, VneZ. (I8)
k=0
In matrix form, the system (18) is equivalent to
vl v Vi—~(RL- 1] |/ H[o)
Y[2) Y] Y[-(RL — 2)] H[1]
. ) ) =0.
Y[RL] Y[RL - 1] Y0] HIRL)

(19)

Since there are RL + 1 unknown filter coefficients, we need
at least RL + 1 equations, therefore, the number of DFT co-
efficients we have to compute is at least 2RL + 1.
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Fig. 1. Receiver block diagram.

3. Find the values of #; by finding the roots of H(z). At this
point, it is worth noting that while this is true in the noiseless
case, in the presence of noise, it is more desirable to estimate
the time delays from L roots of H (z) which are closest to the
unit circle.

4. Solve for the coefficients ¢; , by solving the system of linear
equations in (13),

L

R—1 .
Y(n] = Z Z crpmeTIon
r=0

=1

(20)

A block diagram of the system implementing the above algo-
rithm is shown in Fig. 1.

C. Algorithm in the Presence of Noise

In the theoretical case of noiseless data, any subspace of suf-
ficient dimension', can be used to estimate all the relevant pa-
rameters. In practice, noise will be present, and this can be dealt
with by oversampling and using standard techniques in noisy
spectral estimation, such as the singular value decomposition
(SVD) [16]. Besides, in the presence of noise, it is desirable to
estimate the channel from a frequency band where a signal-to-
noise ratio (SNR) is highest. This brings us to a more practical
version of the above algorithm, which yields robust estimates by
properly exploiting the properties of the signal subspace [15],
[17], [19].

Consider again the system of equations (19). By setting
HJ[0] = 1, the system can be rewritten as Y - h = —y, where

" the matrices Y, h and y are defined as

Y{—(RL - 1)]

¥ [1% Y[0] Y[—(RL — 2)]
Y = : : @n
Y[RL—1] Y[RL - 2] Y[o]
h=(H[1] H[2] H[RLT (22)
y=~(V[l] Y[2] Y[RL)T. (23)

The key is to observe two properties of the matrix Y. The first
one is that in the case of a channel with L propagation paths, Y
can be approximated with a rank-L matrix [15] by computing
its singular value decomposition, that is, Y = USASVSH +

1By “sufficient dimension.” we assume the dimension of the subspace (per
unit of time) that allows us to represent the space of signals of interest.

UnAnVa i 1, where U and V contain L principal left and right
singular vectors of Y. The second property is that both U and
V. satisfy the so-called shift-invariant subspace property [19],

U~SP — y—s_p .® and V_sp = X.S.p . @H, (24)

where & is a diagonal matrix having elements e/“oPli = efwot:
along the main diagonal, while (-)p and (-)p denote the opera-

tions of omitting the first p rows and the last p rows of (-) re-
spectively. Therefore, the time delays {t;}%_, can be uniquely
determineglirom the eigenvalues A; of thgg})erator that maps
Usp onto Usp (or alternatively, E,, onto Vg ),

. 72Y
l_p_ 2rp

(25)

The advantage of using values of p larger than p = 1 is that the
separation between the estimated time delays {; is effectively
increased p times. This is of particular interest in the case of es-
timating closely spaced dominant components in low signal-to-
noise-ratio (SNR) regimes (e.g., SNR < —5dB) when such an
approach can improve the resolution performances significantly
[15]. Once the time delays have been estimated, the coefficients
¢;,» are then found by solving the system (20).

Note that the information about the signal poles, and thus the
time delays, can be directly extracted from the matrix Y. That
is, the above presented approach avoids the root finding part and
relies only on a right deployment of matrix manipulations.

IV. PERFORMANCE EVALUATION

A. Analysis of Noise Sensitivity

The statistical properties of the estimates obtained using high-
resolution methods have been studied extensively, primarily in
the context of estimating the frequencies of superimposed com-
plex sinusoids from noisy measurements [16], [19]. The exact
expressions for the mean-square-error (MSE) of the frequency
estimates are quite complex [17], and in general do not allow for
an explicit dependence of the MSE on the parameters of inter-
est, such as the polynomial degree R or the number of distinct
frequencies L. Therefore, we give a simplified expression for
the MSE in the case of a single exponential, which corresponds
to the estimate of the time delay ¢; of the dominant path. As-
suming that the signal and noise are uncorrelated, the MSE of
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the annihilating filter method can be expressed as [17],

2(2R+1) 1

1
E{A£} ~ { ‘Jg?;EN&VR);?Q(RJF};)QS%R;) for R < N/2
1 2(—(N—-R)*+3R“+3R+ 1
I 3(N-IR(R+1)?  SNR° for R > N/2.
(26)

where SNR is the signal-to-noise ratio at the output of the anti-
aliasing filter at the receiver. Therefore, a choice of the polyno-
mial degree directly affects the estimation performance. In gen-
eral, a good choice for R is between N/10 and 9N/10, while
the minimum MSE is achieved for R = N/3 or R = 2N/3,
leading to

. 1 1
E{ag)y ~ L9 @7

N 5 NTSNR
This is very close to the Cramer-Rao bound (CRB) [24], which
represents the lowest achievable MSE by any unbiased estima-
tor, and is given by

1 6 1

CRB = & ———. 2
wZ N3 SNR %)

We should note that the expressions for performance bounds
(27) and (28) are obtained using the first order perturbation anal-
ysis and are generally valid only for medium to high signal-to-
noise ratios [19]. However, these expressions provide a good
basis for evaluating the performance at different sampling rates.
Namely, the dependence of the root-mean-square-error (RMSE)
on the number of samples N is on the order of O(1/N3/2).
Therefore, by decreasing the sampling rate K times, RMSE
increases roughly by a factor of K3/2, provided that the SNR
does not change. In Section V, we will show that even for very
low values of SNR and sub-Nyquist sampling rates, our method
gives much better performances compared to the matched-filter
approach.

B. Computational Complexity

A major computational requirement of the developed algo-
rithm is associated with the singular-value-decomposition step
in (19), which is an iterative algorithm with the computational
order of O(N?) per iteration where N denotes the total number
of samples used for estimation. In [14] and [15], we suggested
alternative methods of lower computational requirements, which
avoid explicit computation of the SVD and rely only on sim-
ple matrix multiplications. Among them are the power method,
which can be used to estimate only L; = 1 one dominant com-
ponent, and the method of orthogonal iteration, which can es-
timate Ly > 1 paths. The computational complexity of such
methods is on the order of O(LyN?), and they generally con-
verge in less than 10 iterations. In contrast, matched-filter tech-
niques [6] require O(N?) operations, where N,, denotes the
number of samples taken at the Nyquist rate. Furthermore, al-
though the matched-filter approach can be used for synchroniza-
tion purposes, its time resolution is limited by the sampling rate.

V. SIMULATION RESULTS

In this section, we show some simulation results that illus-
trate the performances of our algorithm. All results are based on

averages of over 500 trials, each with a different realization of
additive white Gaussian noise.

A. UWB Timing Performance

We first consider the case of the channel model given by (3),
assuming L = 70 propagation paths with eight dominant paths
(containing 85% of the total power), as illustrated in Fig. 2(a).
The transmitted UWB pulse is a first-derivative Gaussian im-
pulse with the duration of (approximately) 7, = 6 samples?,
while the transmitted signal is modulated with a PN sequence
of length 127. The time delay between the transmitted pulses is
120 samples, while the average time delay between the received
dominant components is 8 samples. In Fig. 2(b), we show root
mean square errors (RMSE) of time delay estimation for the
dominant components vs. SNR (defined here as the ratio be-
tween the energy of the received sequence and a power spectral
density of noise). Since we are considering the case of estimat-
ing closely spaced components for a wide range of SNR’s, we
used the approach presented in Section I1I-C, where the param-
eter p is chosen to be p = 30. The error is plotted for different
values of the sampling rate. The results indicate that the method
yields highly accurate estimates (that is, within a fraction of the
pulse duration) for a wide range of SNR’s, and this with sub-
Nyquist sampling rates. For example, with the sampling rate of
one fourth the Nyquist rate (N; = N,,/4) and SNR = —5dB,
the time delay of the dominant components can be estimated
with an RMSE of approximately 1 sample.

We next analyze the effects of quantization on the estima-
tion performance. In particular, we consider 3-7 bit architec-
tures and for each case, we plot the RMSE versus received SNR.
The sampling rate is assumed to be one fourth the Nyquist rate
(N; = N,/4). Clearly, as the number of bits increases, the
overall performance improves. Generally, the 5-bit architecture
already yields a very good performance. In the case when the
number of bits is very low (e.g., 3 bits), quantization noise be-
comes dominant and determines the overall numerical perfor-
mance, and this for all considered values of SNR.

In Fig. 2(d), we show the RMSE of time delay estimation
along the dominant paths versus the average spacing between
the dominant components. The RMSE is plotted for differ-
ent values of the number of quantization bits in the case when
SNR = —5dB and N, = N, /4. As expected, the performance
of delay estimation improves as the spacing between compo-
nents is increased. Note that estimates of closely spaced paths
are more sensitive to quantization {25], and increasing the sam-
pling rate gives better performance. For example, when the sam-
pling rate is one third the Nyquist rate, it is possible to estimate
the components with an RMSE of less than 1 sample, even in
the case when the average spacing between the components is
only a fraction of the pulse duration.

In the same figure, we show the performance of the method in
the presence of a strong sinusoidal interference. Although mod-
ulating the transmitted signal with a PN sequence is generally
sufficient to suppress the interference, in the case when a signal-
to-interference ratio (SIR) is very low, the processing gain may

2Time is expressed in terms of number of samples. where one sample corre-
sponds to the period of Nyquist-rate sampling.
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Timing recovery in UWB systems: (a) Received UWB signal made up of 70 pulses, with 8 components being dominant (containing

approximately 85% of the total power). The transmitted UWB pulse is an ideal first-derivative Gaussian impulse. (b) Root-mean square error
(RMSE) of delay estimation (in terms of number of samples) of the dominant components vs. SNR. The error is plotted for different values
of the sampling rate N, where N,, denotes the Nyquist rate. (c) Effects of quantization on the RMSE of delay estimation for 3-7 bit receiver

architectures. The sampling rate is one fourth the Nyquist rate (Vs =

Nyp/4). (d) RMSE of delay estimation of the dominant components vs.

average spacing between the components (normalized to the puise duration), for different number of bits used for quantization. We assumed
that SN R = —5dB. Dashed lines correspond to the RMSE in the presence of a strong sinusoidal interference (SIR = —20dB).

not be high enough to ensure the desirable performance. Since
we solve the estimation problem in the frequency domain, we
can take advantage of the fact that the sinusoidal signal is a Dirac
(¢ impulse) in frequency, and exclude the DFT coefficients that
correspond to frequency bands of interfering signals. The re-
sults are shown for the case when SIR = —20dB, which clearly
indicate robustness of the method to strong narrowband interfer-
ence.

B. Channel Estimation Performance

We next consider the case of the channel model given by (5).
Specifically, we assume that a coded sequence of first-derivative
Gaussian impulses is periodically transmitted, while a received
(single) UWB signal is made up of multiple pulses having differ-
ent shapes. We considered the case when there are 4 dominant
closely spaced components, as illustrated in Fig. 3(a). The re-
ceived noiseless and noisy UWB signals for SNR = 0dB are
shown in Fig. 3(b). The received signal is sampled uniformly at
one fourth the Nyquist rate and the samples are averaged over
30 symbols. We first estimated the time delays of the dominant

components by finding the roots of the annihilating filter. As
already pointed out in Section III, the signal poles (and thus the
unknown time delays) can be estimated by choosing L = 4 ze-
ros closest to the unit circle. Once the time delays of the pulses
have been estimated, the corresponding pulse shapes are ob-
tained by polynomial approximation of the DFT coefficients. In
this case, we used a polynomial of degree R = 20, which clearly
yields a very good approximation of the received waveforms.

Effects of the sampling rate N, and the degree of the poly-
nomial R on the estimated pulse shape are illustrated in Fig. 4.
The sampling rate is varied between N; = 0.1N,, and N, =
0.25N,,, while the polynomial degree is chosen between i = 10
and R = 20. In general, by increasing the sampling rate and fit-
ting the DFT coefficients with a polynomial of a larger degree,
we obtain better estimates. For example, very good approxima-
tion of the pulse shape can already be obtained by sampling the
signal at one fifth the Nyquist rate and using a polynomial of
order R = 20, as illustrated in Fig. 4(e). It is also interesting
to note that as the value of R decreases, better performance can
be achieved with lower sampling rates, which can be seen in
Figs. 4(e) and 4(f).
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Fig. 3. Channel Estimation Performance: (a) Received multipath signal (with 4 dominant components) made up of pulses having different pulse
shapes, (b) received noisy signal (blue) and the noiseless pulses (red), (c) estimated shape of the first pulse, (d) estimated shape of the second
pulse, (e) estimated shape of the third pulse, (f) estimated shape of the fourth pulse. The received signal is sampled at one fourth the Nyquist
rate. We used a polynomial of order R = 20 to approximate the DFT coefficients of the received signal.

VI. CONCLUSIONS

We presented a method for subspace channel estimation
in ultra-wideband systems, which takes advantage of our re-
cent sampling results for certain classes of parametric non-
bandlimited signals. Our approach uses well-known spectral
estimation techniques and allows for high-resolution channel es-
timation from the signal subspace. We summarize the appealing
features of our framework:

e Allows for high-resolution channel estimation using sub-

Nyquist uniform sampling.

e Reduced sampling rate leads to reduced computational and
power requirements.

o Uses fast algorithms and structured linear systems.

« Frequency bands used for estimation and sampling rates can
be adapted to channel conditions.

Additionally, our framework allows for identification of more
realistic channel models without resorting to complex algo-
rithms. It is particularly suitable in applications such as estima-
tion of wideband channels, precise position location or ranging.
It can also be used in other wideband systems, such as CDMA,
primarily for timing synchronization and localization purposes.
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