DOI QR코드

DOI QR Code

Spatial Resolution Enhancement with Fiber - based Spectral Filtering for Optical Coherence Tomography

  • Choi, Eun-Seo (Department of Information and Communications, Kwangju Institute of Science and Technology) ;
  • Na, Ji-Hoon (Department of Information and Communications, Kwangju Institute of Science and Technology) ;
  • Lee, Byeong-Ha (Department of Information and Communications, Kwangju Institute of Science and Technology)
  • 투고 : 2003.10.05
  • 발행 : 2003.12.01

초록

We report a technique that improves the spatial resolution of optical coherence tomography (OCT) by utilizing fiber-based spectral filtering. The proposed technique improves the resolution by filtering out the erbium’s characteristic peak from the amplified spontaneous emission (ASE) source spectrum, and reshaping the spectrum to Gaussian-like. We used a long period fiber grating (LPG) and an erbium doped fiber (EDF) absorber for the spectral filtering. An in-house made ASE source as well as a commercial ASE source [ASE-FL7002] was used as the OCT sources to study the proposed technique. The resolution of the OCT based on an in-house made ASE source is enhanced from 200 to 40 ㎛ with an LPG. While, the resolution of the OCT based on a commercial ASE source is enhanced from 25 to 19 ㎛ with the aid of an EDF absorber. However, sidelobes still exist in the interferogram due to imperfect spectral filtering, which limited the resolution. Further enhancement in the spatial resolution of the OCT system using the ASE source is possible with the aid of cascaded LPGs and/or carefully designed EDF absorber.

키워드

참고문헌

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto,'Optical coherence tomography', Science, vol. 254, pp. 1178-1181, 1991 https://doi.org/10.1126/science.1957169
  2. G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Gol-ubovic, E. A. Swanson, and J. G. Fujimoto, 'Rapid acquisition of in vivo biological Images using optical coherence tomography,' Opt. Lett., vol. 21, no. 17, pp. 1408-1410, 1996 https://doi.org/10.1364/OL.21.001408
  3. B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, 'High resolution optical coherence tomographic imaging using a mode-locked Ti:$Al_2O_3$ laser source,' Opt. Lett., vol. 20, no. 1, pp. 1-3, 1995 https://doi.org/10.1364/OL.20.001486
  4. W. Drexler, U. Morger, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fuji-moto, 'In vivo ultrahigh-resolution optical coherence tomography,' Opt. Lett., vol. 24, no.17, pp. 1221-1223, 1999 https://doi.org/10.1364/OL.24.001221
  5. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, E. Scherzer, 'Submicrometer axial resolution optical coherence tomography,' Opt. Lett., vol. 27, no. 20, pp. 1800-1802, 2002 https://doi.org/10.1364/OL.27.001800
  6. J. Kim, H. K. Kim, U.-C. Paek, B. H. Lee, and J. B. Eom, 'The Fabrication of the Photonic Crystal Fiber and its Properties Measurement,' J. Opt. Soc. Kor., vol. 7, no. 2, pp. 150-155, 2003 https://doi.org/10.3807/JOSK.2003.7.2.079
  7. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, R. S. Windeler, 'Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber,' Opt. Lett., vol. 26, no. 9, pp. 608-610, 2001 https://doi.org/10.1364/OL.26.000608
  8. Y. Zhang, M. Sato, and N. Tanno, 'Resolution improvement in optical coherence tomography by optical synthesis of light-emitting diodes,' Opt. Lett., Vol. 26, no. 4, pp. 205-207, 2001 https://doi.org/10.1364/OL.26.000205
  9. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park and J. F. de Boer, 'Spectral shaping for non-Gaussian source spectra in optical coherence tomography,' Opt. Lett., vol. 27, no. 6, pp. 406-408, 2002 https://doi.org/10.1364/OL.27.000406
  10. E. D. J. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, 'Spectral Domain Interferometry for OCDR Using Non-Gaussian Broad-Band Sources,' IEEE Photon. Technol. Lett., vol. 13, no. 1, pp. 64-66, 2001 https://doi.org/10.1109/68.903222
  11. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, 'High speed optical coherence domain reflectometry,' Opt. Lett., vol. 17, no. 3, pp. 151-153, 1992 https://doi.org/10.1364/OL.17.000151
  12. J. A. Izatt, M. D. Kulkarni, H. Wang, K. Kobayashi, and M. V. Sivak, Jr, 'Optical Coherence Tomography and Microscopy in Gastrointestinal Tissues,' IEEE J. Sel. Top. Quantum Electron., vol. 2, no. 4, pp. 1017-1028, 1996 https://doi.org/10.1109/2944.577331
  13. B. E. A. Saleh and M. C. Teich, Fundamentals of photonics (John Wiley & Sons. Inc, New York, 1991)
  14. R. Kashyap, Fiber Bragg Gratings, (Acamedic Press, New York, 1999)
  15. E. Choi, Y.-J., C. Lee, J. Na, C. Lee, and B. Ha Lee, 'OCT Premier in Korea,' in Asian Symposium on Biomedical Optics and Photomedicine 2002, TB2-2, pp. 142-143, 2002
  16. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (John Wiley & Sons, Inc., New York, 1994)