DOI QR코드

DOI QR Code

Client Cache Management Scheme For Data Broadcasting Environments

LRU-CFP: 데이터 방송 환경을 위한 클라이언트 캐쉬 관리 기법

  • 권혁민 (세명대학교 소프트웨어학과)
  • Published : 2003.10.01

Abstract

In data broadcasting environments, the server periodically broadcasts data items in the broadcast channel. When each client wants to access any data item, it should monitor the broadcast channel and wait for the desired item to arrive. Client data caching is a very effective technique for reducing the time spent waiting for the desired item to be broadcastted. This paper proposes a new client cache management scheme, named LRU-CFP, to reduce this waiting time ans evaluates its performance on the basis of a simulation model. The performance results indicate that LRU-CFP scheme shows superior performance over LRU, GRAY and CF in the average response time.

데이타 방송 환경에서 서버는 방송 채널을 통하여 데이타베이스 내의 데이타들을 주기적으로 방송한다. 그리고 각 클라이언트가 어떤 데이타를 액세스하기 위해서는 방송 채널을 감시하여 해당 데이타가 방송되기를 기다려야 한다. 클라이언트 데이타 캐슁은 클라이언트가 액세스하려는 데이타가 방송되기를 기다리는 시간을 줄이기 위한 매우 효과적인 기술이다. 본 논문에서는 이 대기 시간을 줄이기 위하여 LRU-CFP로 명명된 새로운 클라이언트 캐쉬 관리 기법을 제안하고, 모의 실험을 통하여 새로이 제시된 기법의 성능을 평가한다. 성능 평가 결과에 의하면 LRU-CFP 기법은 LRU, GRAY, 그리고 CF 기법보다 평균 응답시간에 있어서 더 우수한 성능을 보인다.

Keywords

References

  1. S. Acharya, R. Alonso, M. Franklin and S. Zdonik, 'Broadcast Disks: Data Management for Asymmetric communications environments,' Proc. of ACM SIGMOD Int. Conf. on Management of Data, San Jose, California, pp.199-210, May, 1995 https://doi.org/10.1145/223784.223816
  2. S. Acharya, M. Franklin, and S. Zdonik, 'Balancing Push and Pull for Data Broadcast', Proc. of ACM SIGMOD, Tuscan, Arizona, pp.183-194, May, 1997 https://doi.org/10.1145/253262.253293
  3. S. Acharya, 'Broadcast Disks: Dissemination-based Data Management for Asymmetric Communication Environments,' PhD thesis, Brown University, 1998
  4. D. Aksoy and M. Franklin, 'Scheduling for Large-Scale On-Demand Data Broadcasting,' Proc. of IEEE INFOCOM, San Francisco, CA, March, 1998 https://doi.org/10.1109/INFCOM.1998.665086
  5. M. Franklin, M. Carey and M. Livny, 'Transactional Client-Server Cache Consistency: Alternatives and Performance,' ACM Trans. on Database Syst., Vol.22, No.3, pp.315-363, 1997 https://doi.org/10.1145/261124.261125
  6. M. Franklin and S. Zdonik, A Framework for Scalable Dissemination-Based System, Proceedings of OOPSLA, 1997 https://doi.org/10.1145/263698.263725
  7. M. Franklin and S. Zdonik, 'Data in Your Face: Push Technology in Perspective,' Proc. of ACM SIGMOD Int. Conf. on Management of Data, Seattle, WA, June, 1998 https://doi.org/10.1145/276304.276360
  8. John H. Howard, Michael L. Kazar, Sheni G. Menees, David A. Nicols, M. Satyanarayanan, Robert N. Sidebotham and Michael J West, 'Scale and Performance in a Dis tributed File System,' ACM Trans. on Computer Systems, Vol.6, No.1, pp.51-89, Feb., 1988 https://doi.org/10.1145/35037.35059
  9. T. Johnson and D. Shasha, '2Q : A Low Overhead High Performance Buffer Management Replacement Algorithm,' Proc. of Int. Conf. on VLDB, Santiago, Chile, pp.439-450, Sep., 1994
  10. V. Liberatore, 'Caching and Scheduling for Broadcast Disk Systems,' Technical Report UMlACS-TR-98-71, University of Maryland, 1998
  11. V. Liberatore, 'Caching and Scheduling for Broadcast Disk Systems,' In the Second Workshop on Algorithm Engineering and Experiments ALENEX 00, San Francisco, Jan., 2000
  12. A. M. Law and W. D. Kelton, 'Simulation Modeling & Analysis,' McGraw-Hill, 1991
  13. E.J. ONeil, P. E. ONeil and G. Weikum, 'The LRU-K Page Replacement Algorithm For Database Disk Buffering,' Proc. of ACM SIGMOD Int. Conf. on Management of Data, pp.297-306, May, 1993
  14. H. Schwetman, C31M User's Guide for Use with CSIM Revision 16, Microelectronics and Computer Technology Corporation, 1992
  15. K. Stathatos, 'Air-Caching : Adaptive Hybrid Data Delivery,' PhD Thesis, Maryland University, 1999
  16. A. Tanenbaum, 'Modem Operating Systems,' Prentice Hall, 1992